Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shifting sound to light may lead to better computer chips

19.03.2009
By reversing a process that converts electrical signals into sounds heard out of a cell phone, researchers may have a new tool to enhance the way computer chips, LEDs and transistors are built.

Lawrence Livermore National Laboratory scientists have for the first time converted the highest frequency sounds into light by reversing a process that converts electrical signals to sound.

Commonly used piezo-electric speakers, such as those found in a cell phone, operate at low frequencies that human ears can hear.

But by reversing that process, lead researchers Michael Armstrong, Evan Reed and Mike Howard, LLNL colleagues, and collaborators from Los Alamos National Laboratory and Nitronex Corp., used a very high frequency sound wave - about 100 million times higher frequency than what humans can hear - to generate light.

“This process allows us to very accurately ‘see’ the highest frequency sound waves by translating them into light,” Armstrong said.

The research appears in the March 15 edition of the journal Nature Physics.

During the last decade, pioneering experiments using sub-picosecond lasers have demonstrated the generation and detection of acoustic and shock waves in materials with terahertz (THz) frequencies. These very same experiments led to a new technique for probing the structure of semiconductor devices.

However, the recent research takes those initial experiments a step further by reversing the process, converting high-frequency sound waves into electricity. The researchers predicted that high frequency acoustic waves can be detected by seeing radiation emitted when the acoustic wave passes an interface between piezoelectric materials.

Very high-frequency sound waves have wavelengths approaching the atomic-length scale. Detection of these waves is challenging, but they are useful for probing materials on very small length scales.

But that’s not the only application, according to Reed.

“This technique provides a new pathway to generation of THz radiation for security, medical and other purposes,” he said. “In this application, we would utilize acoustic-based technologies to generate THz.” Security applications include explosives detection and medical use may include detection of skin cancer.

And the Livermore method doesn’t require any external source to detect the acoustic waves.

“Usually scientists use an external laser beam that bounces off the acoustic wave – much like radar speed detectors – to observe high frequency sound. An advantage of our technique is that it doesn’t require an external laser beam – the acoustic wave itself emits light that we detect,” Armstrong said.

Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>