Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sharpening the lines

15.12.2011
New advance could lead to even smaller features in the constant quest for more compact, faster microchips.

The microchip revolution has seen a steady shrinking of features on silicon chips, packing in more transistors and wires to boost chips’ speed and data capacity. But in recent years, the technologies behind these chips have begun to bump up against fundamental limits, such as the wavelengths of light used for critical steps in chip manufacturing.

Now, a new technique developed by researchers at MIT and the University of Utah offers a way to break through one of these limits, possibly enabling further leaps in the computational power packed into a tiny sliver of silicon. A paper describing the process was published in the journal Physical Review Letters in November.

Postdoc Trisha Andrew PhD ’10 of MIT’s Research Laboratory of Electronics, a co-author of this paper as well as a 2009 paper that described a way of creating finer lines on chips, says this work builds on that earlier method. But unlike the earlier technique, called absorbance modulation, this one allows the production of complex shapes rather than just lines, and can be carried out using less expensive light sources and conventional chip-manufacturing equipment. “The whole optical setup is on a par with what’s out there” in chip-making plants, she says. “We’ve demonstrated a way to make everything cheaper.”

As in the earlier work, this new system relies on a combination of approaches: namely, interference patterns between two light sources and a photochromic material that changes color when illuminated by a beam of light. But, Andrew says, a new step is the addition of a material called a photoresist, used to produce a pattern on a chip via a chemical change following exposure to light. The pattern transferred to the chip can then be etched away with a chemical called a developer, leaving a mask that can in turn control where light passes through that layer.

While traditional photolithography is limited to producing chip features larger than the wavelength of the light used, the method devised by Andrew and her colleagues has now been shown to produce features one-eighth that size. Others have achieved similar sizes before, Andrew says, but only with equipment whose complexity is incompatible with quick, inexpensive manufacturing processes.

The new system uses “a materials approach, combined with sophisticated optics, to get large-scale patterning,” she says. And the technique should make it possible to reduce the size of the lines even further, she says.

The key to beating the limits usually imposed by the wavelength of light and the size of the optical system is an effect called stimulated emission depletion imaging, or STED, which uses fluorescent materials that emit light when illuminated by a laser beam. If the power of the laser falls below a certain level, the fluorescence stops, leaving a dark patch. It turns out that by carefully controlling the laser’s power, it’s possible to leave a dark patch much smaller than the wavelength of the laser light itself. By using the dark areas as a mask, and sweeping the beam across the chip surface to create a pattern, these smaller sizes can be “locked in” to the surface.

That process has previously been used to improve the resolution of optical microscopes, but researchers had thought it inapplicable to photolithographic chip making. The innovation by this MIT and Utah team was to combine STED with the earlier absorbance-modulation technique, replacing the fluorescent materials with a special polymer whose molecules change shape in response to specific wavelengths of light.

In addition to enabling the manufacture of chips with finer features, the technique could also be used in other advanced technologies, such as the production of photonic devices, which use patterns to control the flow of light rather than the flow of electricity. “It can be used for any process that uses optical lithography,” Andrew says.

In addition to Andrew, the paper’s authors include Rajesh Menon, formerly a research engineer at MIT and now an assistant professor of electrical engineering and computer science at Utah, and Utah postdoc Nicole Brimhall and graduate student Rajakumar Varma Manthena. The work was supported in part by grants from the U.S. Defense Advanced Research Projects Agency and the National Science Foundation.

Written by: David L. Chandler, MIT News Office

Kimberly Allen | EurekAlert!
Further information:
http://www.mit.edu

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>