Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sharpening the lines

15.12.2011
New advance could lead to even smaller features in the constant quest for more compact, faster microchips.

The microchip revolution has seen a steady shrinking of features on silicon chips, packing in more transistors and wires to boost chips’ speed and data capacity. But in recent years, the technologies behind these chips have begun to bump up against fundamental limits, such as the wavelengths of light used for critical steps in chip manufacturing.

Now, a new technique developed by researchers at MIT and the University of Utah offers a way to break through one of these limits, possibly enabling further leaps in the computational power packed into a tiny sliver of silicon. A paper describing the process was published in the journal Physical Review Letters in November.

Postdoc Trisha Andrew PhD ’10 of MIT’s Research Laboratory of Electronics, a co-author of this paper as well as a 2009 paper that described a way of creating finer lines on chips, says this work builds on that earlier method. But unlike the earlier technique, called absorbance modulation, this one allows the production of complex shapes rather than just lines, and can be carried out using less expensive light sources and conventional chip-manufacturing equipment. “The whole optical setup is on a par with what’s out there” in chip-making plants, she says. “We’ve demonstrated a way to make everything cheaper.”

As in the earlier work, this new system relies on a combination of approaches: namely, interference patterns between two light sources and a photochromic material that changes color when illuminated by a beam of light. But, Andrew says, a new step is the addition of a material called a photoresist, used to produce a pattern on a chip via a chemical change following exposure to light. The pattern transferred to the chip can then be etched away with a chemical called a developer, leaving a mask that can in turn control where light passes through that layer.

While traditional photolithography is limited to producing chip features larger than the wavelength of the light used, the method devised by Andrew and her colleagues has now been shown to produce features one-eighth that size. Others have achieved similar sizes before, Andrew says, but only with equipment whose complexity is incompatible with quick, inexpensive manufacturing processes.

The new system uses “a materials approach, combined with sophisticated optics, to get large-scale patterning,” she says. And the technique should make it possible to reduce the size of the lines even further, she says.

The key to beating the limits usually imposed by the wavelength of light and the size of the optical system is an effect called stimulated emission depletion imaging, or STED, which uses fluorescent materials that emit light when illuminated by a laser beam. If the power of the laser falls below a certain level, the fluorescence stops, leaving a dark patch. It turns out that by carefully controlling the laser’s power, it’s possible to leave a dark patch much smaller than the wavelength of the laser light itself. By using the dark areas as a mask, and sweeping the beam across the chip surface to create a pattern, these smaller sizes can be “locked in” to the surface.

That process has previously been used to improve the resolution of optical microscopes, but researchers had thought it inapplicable to photolithographic chip making. The innovation by this MIT and Utah team was to combine STED with the earlier absorbance-modulation technique, replacing the fluorescent materials with a special polymer whose molecules change shape in response to specific wavelengths of light.

In addition to enabling the manufacture of chips with finer features, the technique could also be used in other advanced technologies, such as the production of photonic devices, which use patterns to control the flow of light rather than the flow of electricity. “It can be used for any process that uses optical lithography,” Andrew says.

In addition to Andrew, the paper’s authors include Rajesh Menon, formerly a research engineer at MIT and now an assistant professor of electrical engineering and computer science at Utah, and Utah postdoc Nicole Brimhall and graduate student Rajakumar Varma Manthena. The work was supported in part by grants from the U.S. Defense Advanced Research Projects Agency and the National Science Foundation.

Written by: David L. Chandler, MIT News Office

Kimberly Allen | EurekAlert!
Further information:
http://www.mit.edu

More articles from Physics and Astronomy:

nachricht Water without windows: Capturing water vapor inside an electron microscope
13.12.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Columbia engineers create artificial graphene in a nanofabricated semiconductor structure
13.12.2017 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>