Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sharp images with flexible fibers

07.06.2018

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical fibers. They account for the relatively large diameter of the endoscopes that hampers their application in sensitive body regions such as the brain.


Optical waveguides with a perfectly parabolic refractive index profile are almost immune to bending, conserving the transmitted image information. Source: Leibniz-IPHT

A team of international researchers around Prof. Tomáš Čižmár, scientist at Leibniz IPHT, studies multimodal optical fiber probes, in which high-resolution images can be transmitted through just one single hair-thin fiber. For applications such as the survey of single brain cells ‘at work’ in a living organism, the probes must be first and foremost flexible. This is a challenge, as with the bending of the fiber the transferred image is distorted in several ways.

For several years Čižmár already works on a solution to optimize the transfer of image information in multimodal fibers. “Previously, we have shown that the influence of bending on the light propagation can be predicted and the image restored using computer calculations. But the correction is very complicated and we need to know the exact shape of the probe”, explains Čižmár, who heads the Fiberoptics department at Leibniz IPHT since 2017.

Now, the scientists discovered that fibers exhibiting a specific refraction index profile provide a new and much more simple approach. “We came to the idea to use gradient index fibers for image transfer. Other than in common fibers, the light refraction across the fiber diameter does not change abruptly, but gradually in shape of a curve”, says Čižmár. Firstly, the researchers simulated the light propagation in the fibers with theoretical models.

The results suggested that the signal transmission in the fibers is almost immune to movement and bending due to the unique refraction index profile. “In experiments, we managed to proof our ideas only partially. The graded index fibers are indeed much less sensitive towards deformation compared to conventional step index fibers.

Nevertheless, we observe a residual slight distortion of the images, which we assign to deviations from the ideal parabolic refraction index profile of the commercial fibers”, explains first author of the publication Dirk Boonzajer Flaes the extraordinary results. The researchers focus now on the development of gradient index fibers with enhanced optical properties and their application for medical imaging.

The original article “Robustness of light-transport processes to bending deformations in graded-index multimode waveguides” by Dirk E. Boonzajer Flaes, Jan Stopka, Sergey Turtaev, Johannes F. de Boer, Tomáš Tyc, and Tomáš Čižmár appeared online in Physical Review Letters on 6th June 2018.

Weitere Informationen:

https://www.leibniz-ipht.de/en/institute/presse/news/detail/scharfe-bilder-mit-f...
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.233901

Dr. Anja Schulz | idw - Informationsdienst Wissenschaft

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

In focus: Climate adapted plants

25.05.2018 | Event News

 
Latest News

Stem-Cell Niche for 10 Billion Colon Cells a Day

07.06.2018 | Life Sciences

Designer materials with completely random structures might enable quantum computing

06.06.2018 | Physics and Astronomy

Parkinson’s: Vitamin B3 has a positive effect on damaged nerve cells

06.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>