Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shake, rattle and … power up? A new MEMS device generates energy from small vibrations

15.09.2011
Today’s wireless-sensor networks can do everything from supervising factory machinery to tracking environmental pollution to measuring the movement of buildings and bridges. Working together, distributed sensors can monitor activity along an oil pipeline or throughout a forest, keeping track of multiple variables at a time.

While uses for wireless sensors are seemingly endless, there is one limiting factor to the technology — power. Even though improvements have brought their energy consumption down, wireless sensors’ batteries still need changing periodically. Especially for networks in remote locales, replacing batteries in thousands of sensors is a staggering task.

To get around the power constraint, researchers are harnessing electricity from low-power sources in the environment, such as vibrations from swaying bridges, humming machinery and rumbling foot traffic. Such natural energy sources could do away with the need for batteries, powering wireless sensors indefinitely.

Now researchers at MIT have designed a device the size of a U.S. quarter that harvests energy from low-frequency vibrations, such as those that might be felt along a pipeline or bridge. The tiny energy harvester — known technically as a microelectromechanical system, or MEMS — picks up a wider range of vibrations than current designs, and is able to generate 100 times the power of devices of similar size. The team published its results in the Aug. 23 online edition of Applied Physics Letters.

“There are wireless sensors widely available, but there is no supportive power package,” says Sang-Gook Kim, a professor of mechanical engineering at MIT and co-author of the paper. “I think our vibrational-energy harvesters are a solution for that.”

Putting the squeeze on

To harvest electricity from environmental vibrations, researchers have typically looked to piezoelectric materials such as quartz and other crystals. Such materials naturally accumulate electric charge in response to mechanical stress (piezo, in Greek, means to squeeze or press). In the past few years, researchers have exploited piezoelectric material, or PZT, at the microscale, engineering MEMS devices that generate small amounts of power.

Various groups have gravitated toward a common energy-harvesting design: a small microchip with layers of PZT glued to the top of a tiny cantilever beam. As the chip is exposed to vibrations, the beam moves up and down like a wobbly diving board, bending and stressing the PZT layers. The stressed material builds up an electric charge, which can be picked up by arrays of tiny electrodes.

However, the cantilever-based approach comes with a significant limitation. The beam itself has a resonant frequency — a specific frequency at which it wobbles the most. Outside of this frequency, the beam’s wobbling response drops off, along with the amount of power that can be generated.

“In the lab, you can move and shake the devices at the frequencies you want, and it works,” says co-author Arman Hajati, who conducted the work as a PhD student at MIT. “But in reality, the source of vibration is not constant, and you get very little power if the frequency is not what you were expecting.”

To address the problem, some researchers have taken a “power in numbers” approach, simply increasing the number of cantilever beams and PZT layers occupying a chip. However, Kim and Hajati say this tactic can be wasteful, and expensive.

“In order to deploy millions of sensors, if the energy harvesting device is $10, it may be too costly,” says Kim, who is a member of MIT’s Microsystems Technology Laboratories. “But if it is a single-layer MEMS device, then we can fabricate [the device for] less than $1.”

Bridging the power divide

Kim and Hajati came up with a design that increases the device’s frequency range, or bandwidth, while maximizing the power density, or energy generated per square centimeter of the chip. Instead of taking a cantilever-based approach, the team went a slightly different route, engineering a microchip with a small bridge-like structure that’s anchored to the chip at both ends. The researchers deposited a single layer of PZT to the bridge, placing a small weight in the middle of it.

The team then put the device through a series of vibration tests, and found it was able to respond not just at one specific frequency, but also at a wide range of other low frequencies. The researchers calculated that the device was able to generate 45 microwatts of power with just a single layer of PZT — an improvement of two orders of magnitude compared to current designs.

“If the ambient vibration is always at a single frequency and does not vary, [current designs] work fine,” says Daniel Inman, professor of aerospace engineering at the University of Michigan. “But as soon as the frequency varies or shifts a little, the power decreases drastically. This design allows the bandwidth to be larger, meaning the problem is, in principle, solved.” Inman adds that going forward, the MIT group will have to aim lower in the frequencies they pick up, since few vibrations in nature occur at the relatively high frequency ranges captured by the device.

Hajati says the team plans to do just that, optimizing the design to respond to lower frequencies and generate more power.

“Our target is at least 100 microwatts, and that’s what all the electronics guys are asking us to get to,” says Hajati, now a MEMS development engineer at FujiFilm Dimatix in Santa Clara, Calif. “For monitoring a pipeline, if you generate 100 microwatts, you can power a network of smart sensors that can talk forever with each other, using this system.”

Marta Buczek | EurekAlert!
Further information:
http://www.mit.edu

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>