Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Search for Higgs boson at Large Hadron Collider reveals new particle

Physicists on experiments at the Large Hadron Collider announced today that they have observed a new particle. Whether the particle has the properties of the predicted Higgs boson remains to be seen.

Hundreds of scientists and graduate students from American institutions have played important roles in the search for the Higgs at the LHC. More than 1,700 people from U.S. institutions--including 89 American universities and seven U.S. Department of Energy (DOE) national laboratories--helped design, build and operate the LHC accelerator and its four particle detectors.

The United States, through DOE's Office of Science and the National Science Foundation, provides support for research and detector operations at the LHC and also supplies computing for the ATLAS and CMS experiments.

The results announced today are labeled preliminary. They are based on data collected in 2011 and 2012, with the 2012 data still under analysis. A more complete picture of today's observations will emerge later this year after the LHC provides the experiments with more data.

The new particle is in the mass region around 125-126 GeV. Publication of the analyses shown today is expected around the end of July.

"I congratulate the thousands of scientists around the globe for their outstanding work in searching for the Higgs boson," said U.S. Secretary of Energy Steven Chu. "Today's announcement on the latest results of this search shows the benefits of sustained investments in basic science by governments around the world. Scientists have been looking for the Higgs particle for more than two decades; these results help validate the Standard Model used by scientists to explain the nature of matter."

The CMS and ATLAS experiments in December announced seeing tantalizing hints of a new particle in their hunt for the Higgs, the missing piece in the Standard Model of particle physics. Since resuming data-taking in March 2012, the CMS and ATLAS experiments have more than doubled their collected data. The statistical significance of the earlier hints has grown.

"What has been announced today could not have been accomplished without the cooperation of scientists and nations throughout the world in seeking an understanding of the fundamental laws of nature," said Ed Seidel, NSF's assistant director for the Mathematical and Physical Sciences. "If the particle announced today at CERN is confirmed to be the Higgs boson, this represents a keystone in our knowledge of the elementary forces and particles that exist in our universe."

Scientists on experiments at the LHC announced their latest results at a seminar at the home of the LHC, the CERN particle physics laboratory on the border of Switzerland and France. Physicists from across the United States gathered at laboratories and universities in the middle of the night to watch a live-stream of the seminar online. The vast majority of U.S. scientists participate in the LHC experiments from their home institutions, remotely accessing and analyzing the data through high-capacity networks and grid computing.

Scientists will give more detailed presentations about the results this week at the biannual International Conference on High Energy Physics, held this year in Melbourne, Australia.

The Standard Model of particle physics has proven to explain correctly the elementary particles and forces of nature through more than four decades of experimental tests. But it cannot, without the Higgs boson, explain how most of these particles acquire their mass, a key ingredient in the formation of our universe.

Scientists proposed in 1964 the existence of a new particle, now known as the Higgs boson, whose coupling with other particles would determine their mass. Experiments at the LEP collider at CERN and the Tevatron collider at the Department of Energy's Fermilab have searched for the Higgs boson, but it has eluded discovery. Only now, after decades of developments in accelerator and detector technology and computing--not to mention advancements in the understanding of the rest of the Standard Model--are scientists approaching the moment of knowing whether the Higgs was the right solution to this problem.

"What we are observing is very likely a new particle with very large mass that would have to be a boson," said University of California Santa Barbara physicist Joe Incandela, spokesperson of the CMS experiment. "This is potentially an historic and very profound step forward in our understanding of the underlying structure of our universe. "

When protons collide in the Large Hadron Collider, their energy can convert into mass, often creating short-lived particles. These particles quickly decay into pairs of lighter, more stable particles that scientists can record with their detectors.

Theoretical physicists have predicted the rate at which the Higgs boson will be produced in high-energy proton-proton collisions at the LHC and also how it decays into certain combinations of observable particles. Experimental physicists at the ATLAS and CMS experiments have been studying the collisions and have observed a new particle. They will need to collect more data and run further analysis to determine its properties.

"If the new particle is determined to be the Higgs, attention will turn to a new set of important questions," said University of California Irvine physicist Andy Lankford, deputy spokesperson of ATLAS. "Is this a Standard Model Higgs, or is it a variant that indicates new physics and other new particles?"

Discovery of the Higgs - or another new particle - would represent only the first step into a new realm of understanding of the world around us.

Information about the US participation in the LHC is available at Follow US LHC on Twitter at

Fermilab is America's premier national laboratory for particle physics research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois and operated under contract by the Fermi Research Alliance, LLC. Visit Fermilab's website at and follow us on Twitter at @FermilabToday.

Brookhaven National Laboratory is operated and managed for DOE's Office of Science by Brookhaven Science Associates and Battelle. Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more:

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

The National Science Foundation focuses its LHC support on funding the activities of U.S. university scientists and students on the ATLAS, CMS and LHCb detectors, as well as promoting the development of advanced computing innovations essential to address the data challenges posed by the LHC. For more information, please visit

CERN, the European Organization for Nuclear Research, is the world's leading laboratory for particle physics. It has its headquarters in Geneva. At present, its Member States are Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. Romania is a candidate for accession. Israel and Serbia are Associate Members in the pre-stage to Membership. India, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and UNESCO have Observer status.

Fact sheets, images, graphics and videos:
Illustration: Standard Model particles
Med res:

High res:

Photo: Remote Operations Center at Fermilab


Video: What is a Higgs boson?
Video: How do we search for Higgs bosons?
Fact sheet: Frequently Asked Questions about the Higgs boson:
Definitions of important terms:
Photos in the CERN photo archive:"

Kurt Riesselmann | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>