Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Search for planets with Carmenes successful


German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes” spectrograph. They now discovered their first star with an exoplanet: The planet is called HD 147379b and is slightly more massive than Neptune. Its star is a so-called M-dwarf only about half as massive as the Sun. The findings were discussed at a Science Meeting in Göttingen and published in Astronomy & Astrophysics.

Dome of the 3.5 m telescope on Calar Alto, Southern Spain, the largest telescope in continental Western Europe.

Photo: Carmenes

New planet HD 147379b's orbit around its star (right) in comparison to our Solar System (left).

Photo: Carmenes

HD 147379b orbits its star once every 86 days at a distance that is only a third of the distance between Earth and the Sun. At this location, the planet is located inside the so-called habitable zone where water could exist in liquid form. However, it is unlikely that life could develop on this planet because it probably has no solid surface.

“Carmenes is optimized to find planets inside the habitable zones of low-mass stars because this is where we believe the chances that life can develop are highest,” says Professor Ansgar Reiners from Göttingen University’s Institute for Astrophysics. “Finding our first planet right at this place shows that our search for planets in the habitable zone is very efficient.”

Carmenes was planned and built by eleven partners from Germany and Spain, among them the Institute for Astrophysics at Göttingen University. “Carmenes is the first spectrograph that simultaneously looks at optical and infrared light,” explains Professor Stefan Dreizler at the Institute for Astrophysics in Göttingen. “This is an important advantage for the search for planets around low-mass stars.” Carmenes consists of two spectrographs that were optimized for the search for planets around nearby stars.

The project runs at least until 2020. The scientists hope to be able to extend their program beyond this date. “The discovery of an Earth-like planet often requires more than one hundred measurements,” says Göttingen astronomer Dr. Mathias Zechmeister. “We are searching for these planets around hundreds of stars, and for this we need very large amounts of telescope time.” The German Research Foundation (DFG) supports the project through a research unit at the University of Göttingen. Further information can be found online at

Original publication: Reiners, Ribas, Zechmeister et al. HD 147379b: A nearby neptune in the temperate zone of an early M dwarf. Astronomy & Astrophysics 2017. Doi: 10.1051/0004-6361/201732165.

Prof. Dr. Ansgar Reiners
University of Göttingen
Faculty of Physics
Institute for Astrophysics
Phone +49 551 39-13825

Prof. Dr. Stefan Dreizler
University of Göttingen
Faculty of Physics
Institute for Astrophysics
Phone +49 551 39-5041

Weitere Informationen:

Thomas Richter | idw - Informationsdienst Wissenschaft
Further information:

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>



Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

More VideoLinks >>>