Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Find They Are Still in the Dark Understanding How the Biggest Black Holes Were Born

11.09.2013
Current theories of supermassive black holes are incomplete, and more observational evidence is needed

Unresolved questions about the nature of supermassive black holes, gravitational monsters at the heart of nearly all large galaxies, were at the forefront of a recent conference at the Kavli Institute for Theoretical Physics (KITP) at the University of California, Santa Barbara.

Held in August, the conference, “Massive Black Holes: Birth, Growth and Impact,” brought together a diverse group of scientists from around the world to discuss how the first supermassive black holes may have formed, how they grew so fast in the early universe, and what role they played in the formation and growth of the first galaxies.

Among the topics: how theoretical predictions describing the formation and growth of these astronomical objects are failing to explain our latest astronomical observations.

“At this conference it has become clear that we are missing something when trying to explain how a black hole grows into a supermassive black hole found in the center of a galaxy,” said Priyamvada Natarajan, a professor in the Departments of Astronomy and Physics at Yale University. “For decades we’ve expected these supermassive black holes were all originally small black holes that somehow grew into these monsters at the hearts of galaxies. But our computer simulations of black hole growth, based largely on theoretical ideas, show that they prematurely stunt their own growth and fail to become the heaviest supermassive black holes that we are detecting. So our theories need to be revised.”

Natarajan remarks came at the end of the conference when she participated in a Kavli Foundation roundtable discussion with three other speakers: Andrea Merloni, a researcher at the Max Planck Institute for Extraterrestrial Physics in Garching, Germany; Tommaso Treu, a professor in the Department of Physics at U.C. Santa Barbara; and John Wise, an assistant professor at the Center for Relativistic Astrophysics at the Georgia Institute of Technology.

According to Merloni, fundamental questions remain about even the basics about how black holes grow. “We have a theoretical understanding of how matter gets into a black hole, forming a disk around it as it does so, for example,” he said. “But we haven’t fully connected our theories to what we observe, especially with quasars, these incredibly bright centers of very distant galaxies that serve as beacons of the early universe.”

How supermassive black holes at the center of galaxy clusters interact with gas and even dark matter in the cluster is also unknown. “The most interesting (question) for me is how the outgoing energy affects the underlying distribution of dark matter,” said Treu. “We want to know because you can learn about the physical properties of dark matter – whether it interacts with itself, whether it is warm or cold, and so on. But in order to understand that, you need to understand dark matter’s relationship to black holes – how black holes and dark matter “talk” to each other.”

More from the roundtable discussion can be found at The Kavli Foundation’s website: http://www.kavlifoundation.org/science-spotlights/black-holes-revisited

LIVE GOOGLE HANGOUT: On Sept. 11 from Noon-12:30 PDT, The Kavli Foundation will host a Google Hangout on supermassive black holes with three researchers: Roger Blandford from the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, Priyamvada Natarajan from Yale University and John Wise from Georgia Tech. Details on this Hangout can be found at http://www.kavlifoundation.org/science-spotlights/spotlight-live-black-holes-cosmic-evolution

James Cohen | Newswise
Further information:
http://www.kavlifoundation.org

More articles from Physics and Astronomy:

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

nachricht New models give insight into the heart of the Rosette Nebula
13.02.2018 | University of Leeds

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers at Kiel University develop extremely sensitive sensor system for magnetic fields

15.02.2018 | Power and Electrical Engineering

Australian fire beetle avoids the heat - Its infrared organs warn the insect of hot surfaces

15.02.2018 | Life Sciences

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>