Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Find They Are Still in the Dark Understanding How the Biggest Black Holes Were Born

11.09.2013
Current theories of supermassive black holes are incomplete, and more observational evidence is needed

Unresolved questions about the nature of supermassive black holes, gravitational monsters at the heart of nearly all large galaxies, were at the forefront of a recent conference at the Kavli Institute for Theoretical Physics (KITP) at the University of California, Santa Barbara.

Held in August, the conference, “Massive Black Holes: Birth, Growth and Impact,” brought together a diverse group of scientists from around the world to discuss how the first supermassive black holes may have formed, how they grew so fast in the early universe, and what role they played in the formation and growth of the first galaxies.

Among the topics: how theoretical predictions describing the formation and growth of these astronomical objects are failing to explain our latest astronomical observations.

“At this conference it has become clear that we are missing something when trying to explain how a black hole grows into a supermassive black hole found in the center of a galaxy,” said Priyamvada Natarajan, a professor in the Departments of Astronomy and Physics at Yale University. “For decades we’ve expected these supermassive black holes were all originally small black holes that somehow grew into these monsters at the hearts of galaxies. But our computer simulations of black hole growth, based largely on theoretical ideas, show that they prematurely stunt their own growth and fail to become the heaviest supermassive black holes that we are detecting. So our theories need to be revised.”

Natarajan remarks came at the end of the conference when she participated in a Kavli Foundation roundtable discussion with three other speakers: Andrea Merloni, a researcher at the Max Planck Institute for Extraterrestrial Physics in Garching, Germany; Tommaso Treu, a professor in the Department of Physics at U.C. Santa Barbara; and John Wise, an assistant professor at the Center for Relativistic Astrophysics at the Georgia Institute of Technology.

According to Merloni, fundamental questions remain about even the basics about how black holes grow. “We have a theoretical understanding of how matter gets into a black hole, forming a disk around it as it does so, for example,” he said. “But we haven’t fully connected our theories to what we observe, especially with quasars, these incredibly bright centers of very distant galaxies that serve as beacons of the early universe.”

How supermassive black holes at the center of galaxy clusters interact with gas and even dark matter in the cluster is also unknown. “The most interesting (question) for me is how the outgoing energy affects the underlying distribution of dark matter,” said Treu. “We want to know because you can learn about the physical properties of dark matter – whether it interacts with itself, whether it is warm or cold, and so on. But in order to understand that, you need to understand dark matter’s relationship to black holes – how black holes and dark matter “talk” to each other.”

More from the roundtable discussion can be found at The Kavli Foundation’s website: http://www.kavlifoundation.org/science-spotlights/black-holes-revisited

LIVE GOOGLE HANGOUT: On Sept. 11 from Noon-12:30 PDT, The Kavli Foundation will host a Google Hangout on supermassive black holes with three researchers: Roger Blandford from the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, Priyamvada Natarajan from Yale University and John Wise from Georgia Tech. Details on this Hangout can be found at http://www.kavlifoundation.org/science-spotlights/spotlight-live-black-holes-cosmic-evolution

James Cohen | Newswise
Further information:
http://www.kavlifoundation.org

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>