Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover 'dancing' algae

22.04.2009
Unique footage shows 'waltzing' and 'minueting'

Scientists at the Cambridge University have discovered that freshwater algae can form stable groupings in which they dance around each other, miraculously held together only by the fluid flows they create. Their research was published today in the journal Physical Review Letters.

The researchers studied the multicellular organism Volvox, which consists of approximately 1,000 cells arranged on the surface of a spherical matrix about half a millimetre in diameter. Each of the surface cells has two hair-like appendages known as flagella, whose beating propels the colony through the fluid and simultaneously makes them spin about an axis.

The researchers found that colonies swimming near a surface can form two types of "bound states"; the "waltz", in which the two colonies orbit around each other like a planet circling the sun, and the "minuet", in which the colonies oscillate back and forth as if held by an elastic band between them.

The researchers have developed a mathematical analysis that shows these dancing patterns arise from the manner in which nearby surfaces modify the fluid flow near the colonies and induce an attraction between them. The observations constitute the first direct visualisations of the flows, which have been predicted to produce such an attraction. They have been implicated previously in the accumulation of swimming microorganisms such as bacteria and sperm cells near surfaces.

These findings also have implications for clustering of colonies at the air-water interface, where these recirculating flows can enhance the probability of fertilization during the sexual phase of their life cycle.

Professor Raymond E. Goldstein, the Schlumberger Professor of Complex Physical Systems in the Department of Applied Mathematics and Theoretical Physics (DAMTP) and lead author of the study, said: "These striking and unexpected results remind us not only of the grace and beauty of life, but also that remarkable phenomena can emerge from very simple ingredients."

Funded by the Biotechnology and Biological Sciences Research Council (BBSRC), the work is part of a larger effort to improve our knowledge of evolutionary transitions from single-cell organisms to multicellular ones. This greater understanding of the nature of self-propulsion and collective behaviour of these organisms promises to elucidate key evolutionary steps toward greater biological complexity.

Moreover, the flagella of Volvox are nearly identical to the cilia in the human body, whose coordinated action is central to many processes in embryonic development, reproduction, and the respiratory system. For this reason, the study of flagellar organisation has potentially broad implications for human health and disease.

The group was led by Professor Goldstein and included Ph.D. student Knut Drescher, postdoctoral researchers Drs. Idan Tuval and Kyriacos C. Leptos, Professor Timothy J. Pedley of DAMTP, and Prof. Takuji Ishikawa of Tohoku University, Japan.

For additional information please contact:
Genevieve Maul, Office of Communications, University of Cambridge
Tel: +44 (0) 1223 332300, +44 (0) 1223 765542
Mob: +44 (0) 7774 017464
Email: Genevieve.maul@admin.cam.ac.uk
Professor Ray Goldstein, DAMTP
Tel: +44 (0)1223 337908
Email: R.E.Goldstein@damtp.cam.ac.uk
Web: www.damtp.cam.ac.uk/user/gold
Notes to editors:
1. The article 'Dancing Volvox : Hydrodynamic Bound States of Swimming Algae' was published today in the journal Physical Review Letters.

2. Video footage and image available upon request. Image and video credit: Please credit Professor Goldstein and Knut Drescher.

3. About BBSRC: The Biotechnology and Biological Sciences Research Council (BBSRC) is the UK funding agency for research in the life sciences. Sponsored by Government, BBSRC annually invests around £450 million in a wide range of research that makes a significant contribution to the quality of life for UK citizens and supports a number of important industrial stakeholders including the agriculture, food, chemical, healthcare and pharmaceutical sectors. BBSRC carries out its mission by funding internationally competitive research, providing training in the biosciences, fostering opportunities for knowledge transfer and innovation and promoting interaction with the public and other stakeholders on issues of scientific interest in universities, centres and institutes.

4. Department of Applied Mathematics and Theoretical Physics (DAMTP) has a 50-year tradition of carrying out research of world-class excellence in a broad range of subjects across applied mathematics and theoretical physics. Members of DAMTP have made seminal theoretical advances in the development of mathematical techniques and in the application of mathematics, combined with physical reasoning, to many different areas of science. A unique strength is the G K Batchelor Laboratory, in which fundamental experimental science is also performed. Research students have always played a crucial role in DAMTP research, working on demanding research problems under the supervision of leading mathematical scientists and, in many cases, moving on to become research leaders themselves. The current aims of DAMTP are to continue this tradition, in doing so broadening the range of subject areas studied and using new mathematical and computational techniques.

Genevieve Maul | EurekAlert!
Further information:
http://www.cam.ac.uk
http://www.bbsrc.ac.uk

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>