Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists discover 'dancing' algae

Unique footage shows 'waltzing' and 'minueting'

Scientists at the Cambridge University have discovered that freshwater algae can form stable groupings in which they dance around each other, miraculously held together only by the fluid flows they create. Their research was published today in the journal Physical Review Letters.

The researchers studied the multicellular organism Volvox, which consists of approximately 1,000 cells arranged on the surface of a spherical matrix about half a millimetre in diameter. Each of the surface cells has two hair-like appendages known as flagella, whose beating propels the colony through the fluid and simultaneously makes them spin about an axis.

The researchers found that colonies swimming near a surface can form two types of "bound states"; the "waltz", in which the two colonies orbit around each other like a planet circling the sun, and the "minuet", in which the colonies oscillate back and forth as if held by an elastic band between them.

The researchers have developed a mathematical analysis that shows these dancing patterns arise from the manner in which nearby surfaces modify the fluid flow near the colonies and induce an attraction between them. The observations constitute the first direct visualisations of the flows, which have been predicted to produce such an attraction. They have been implicated previously in the accumulation of swimming microorganisms such as bacteria and sperm cells near surfaces.

These findings also have implications for clustering of colonies at the air-water interface, where these recirculating flows can enhance the probability of fertilization during the sexual phase of their life cycle.

Professor Raymond E. Goldstein, the Schlumberger Professor of Complex Physical Systems in the Department of Applied Mathematics and Theoretical Physics (DAMTP) and lead author of the study, said: "These striking and unexpected results remind us not only of the grace and beauty of life, but also that remarkable phenomena can emerge from very simple ingredients."

Funded by the Biotechnology and Biological Sciences Research Council (BBSRC), the work is part of a larger effort to improve our knowledge of evolutionary transitions from single-cell organisms to multicellular ones. This greater understanding of the nature of self-propulsion and collective behaviour of these organisms promises to elucidate key evolutionary steps toward greater biological complexity.

Moreover, the flagella of Volvox are nearly identical to the cilia in the human body, whose coordinated action is central to many processes in embryonic development, reproduction, and the respiratory system. For this reason, the study of flagellar organisation has potentially broad implications for human health and disease.

The group was led by Professor Goldstein and included Ph.D. student Knut Drescher, postdoctoral researchers Drs. Idan Tuval and Kyriacos C. Leptos, Professor Timothy J. Pedley of DAMTP, and Prof. Takuji Ishikawa of Tohoku University, Japan.

For additional information please contact:
Genevieve Maul, Office of Communications, University of Cambridge
Tel: +44 (0) 1223 332300, +44 (0) 1223 765542
Mob: +44 (0) 7774 017464
Professor Ray Goldstein, DAMTP
Tel: +44 (0)1223 337908
Notes to editors:
1. The article 'Dancing Volvox : Hydrodynamic Bound States of Swimming Algae' was published today in the journal Physical Review Letters.

2. Video footage and image available upon request. Image and video credit: Please credit Professor Goldstein and Knut Drescher.

3. About BBSRC: The Biotechnology and Biological Sciences Research Council (BBSRC) is the UK funding agency for research in the life sciences. Sponsored by Government, BBSRC annually invests around £450 million in a wide range of research that makes a significant contribution to the quality of life for UK citizens and supports a number of important industrial stakeholders including the agriculture, food, chemical, healthcare and pharmaceutical sectors. BBSRC carries out its mission by funding internationally competitive research, providing training in the biosciences, fostering opportunities for knowledge transfer and innovation and promoting interaction with the public and other stakeholders on issues of scientific interest in universities, centres and institutes.

4. Department of Applied Mathematics and Theoretical Physics (DAMTP) has a 50-year tradition of carrying out research of world-class excellence in a broad range of subjects across applied mathematics and theoretical physics. Members of DAMTP have made seminal theoretical advances in the development of mathematical techniques and in the application of mathematics, combined with physical reasoning, to many different areas of science. A unique strength is the G K Batchelor Laboratory, in which fundamental experimental science is also performed. Research students have always played a crucial role in DAMTP research, working on demanding research problems under the supervision of leading mathematical scientists and, in many cases, moving on to become research leaders themselves. The current aims of DAMTP are to continue this tradition, in doing so broadening the range of subject areas studied and using new mathematical and computational techniques.

Genevieve Maul | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>