Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saturn's aurorae images 'unique to science'

11.02.2010
University of Leicester team leads international programmes using Hubble Space Telescope

Scientists from the University of Leicester have led an international study to capture space images that are unique to science.

Researchers using the NASA/ESA Hubble Space Telescope (HST) recently took advantage of the rare opportunity to record Saturn when its rings are edge-on, resulting in a unique movie featuring both of the giant planet's poles.

Saturn is only in this position every 15 years and this prime orientation allowed a sustained study of both of its beautiful and dynamic aurorae that decorate its poles much like the northern and southern lights on our own planet.

The study is a result of two Hubble Space Telescope programmes led by Jonathan Nichols at the University of Leicester.

Dr. Nichols said: "Hubble has proved to be one of mankind's most important scientific tools, and this is the first time that a group in the UK has led a HST programme to observe the aurorae on another world.

"However, scientists at the University of Leicester, including Prof. Stan Cowley and Dr. Emma Bunce in the Radio & Space Plasma Physics Group, did not just observe using HST, they are also actively involved in the Cassini mission which is observing many different aspects of Saturn's aurore and magnetic field, and which was recently extended to 2017 by NASA. The HST and Cassini observations combine to form a significant scientific force."

It takes Saturn almost thirty years to orbit our Sun so chances to image both of its poles simultaneously are rare. Since 1994, Hubble has been snapping pictures of the planet at a good angle, but 2009 brought the unique opportunity for Hubble to image Saturn with rings edge-on. In addition, the ringed planet was approaching its equinox when both poles are equally illuminated by the Sun's rays [1].

These recent observations go well beyond just a still image and allowed researchers to monitor the behaviour of both Saturn's poles in the same shot over a sustained period of time and create a movie. Over several days during January and March 2009, Hubble collected data from the ringed planet that aided astronomers studying both its northern and southern swirling aurorae. Given the rarity of such an event, this new footage will likely be the last and best equinox movie that Hubble captures of our planetary neighbour.

Dr. Nichols added: "It is particularly exciting to know that these images are unique to science. They have not, and will never again, be obtained using Hubble. This is because HST pictured Saturn at a very special vantage point, near its equatorial plane. Due to Saturn's long orbit, HST will not see this view again in its lifetime. This sustained series images of simultaneous north-south aurora are important scientifically, since they cannot be obtained at any other planet, including Earth. They tell us a great deal about the nature of the planet's magnetic field and the processes which generate aurore in a way not possible at Earth. It's a great example of how planetary science can fully complement the study of the Earth."

Despite its great distance, the Sun is still Saturn's parent star and a parents' influence is far reaching. The hot Sun constantly emits particles that reach all of the planets of the solar system in the form of solar wind. When this electrically charged stream gets close to a planet, the planet's magnetic field traps the particles, bouncing them back and forth between its two poles. The magnetic field thus focuses the particles on the polar regions, where they interact with atoms in the upper layers of the atmosphere creating aurorae, the familiar glow that the inhabitants of the Earth's polar regions know as the northern and southern lights.

The light show of Saturn's aurorae appears symmetric at the two poles. [2] However, analysing the new data in greater detail, astronomers discovered some subtle differences between the northern and southern aurorae, which reveal important information about Saturn's magnetic field. The northern auroral oval is slightly smaller and more intense than the southern one, implying that Saturn's magnetic field is not equally distributed across the orb of the planet; it is slightly uneven and is stronger in the north than the south. As a result, the electrically charged particles in the north are accelerated to higher energies as they are fired toward the atmosphere than those in the south. This confirms a previous result obtained by the space probe Cassini, in orbit around the ringed planet since 2004.

• Dr Nichols will be discussing this subject as part of the Leicester Physics Centre Public Lecture entitled 'Lots in Space'. It takes place on Tuesday 16 March at 18:30 in Lecture Theatre 3 of the Ken Edwards building, University of Leicester.

Dr. Jonathan Nichols | EurekAlert!
Further information:
http://www.le.ac.uk

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>