Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salt block unexpectedly stretches in Sandia experiments

25.06.2009
Nanoscopic discovery may have implications for smog, asthma, cloud formation

To stretch a supply of salt generally means using it sparingly.

But researchers from Sandia National Laboratories and the University of Pittsburgh were startled when they found they had made the solid actually physically stretch.

"It's not supposed to do that," said Sandia principal investigator Jack Houston. "Unlike, say, gold, which is ductile and deforms under pressure, salt is brittle. Hit it with a hammer, it shatters like glass."

That a block of salt can stretch rather than remain inert might affect world desalination efforts, which involve choosing particular sizes of nanometer-diameter pores to strain salts from brackish water. Understanding unexpected salt deformations also may lead to better understanding of sea salt aerosols, implicated in problems as broad as cloud nucleation, smog formation, ozone destruction and asthma triggers, the researchers write in their paper published in the May Nanoletters.

The serendipitous discovery came about as researchers were examining the mechanical properties of salt in the absence of water. They found unexpectedly that the brittle substance appeared malleable enough to distort over surprisingly long distances by clinging to a special microscope’s nanometer-sized tip as it left the surface of the salt.

More intense examination showed that surface salt molecules formed a kind of bubble — a ductile meniscus — with the exploratory tip as it withdrew from penetrating the cube. In this, it resembled the behavior of the surface of water when an object is withdrawn from it. But unlike water, the salt meniscus didn't break from its own weight as the tip was withdrawn. Instead it followed the tip along, slip-sliding away (so to speak) as it thinned and elongated from 580 nanometers (nm) to 2,191 nm in shapes that resembled nanowires.

A possible explanation for salt molecules peeling off the salt block, said Houston, is that "surface molecules don't have buddies." That is, because there's no atomic lattice above them, they're more mobile than the internal body of salt molecules forming the salt block.

Salt showing signs of surface mobility at room temperatures was "totally surprising," said Houston, who had initially intended to study more conventionally interesting characteristics of the one-fourth-inch square, one-eighth-inch-long salt block.

Other researchers on this work include Sandia's Nathan Moore, with Hunhang Luo and Scott Mao from the University of Pittsburgh.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Sandia news media contact: Neal Singer, nsinger@sandia.gov (505) 845-7078

Neal Singer | EurekAlert!
Further information:
http://www.sandia.gov

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>