Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saarbrücken physicists aim to make transition to quantum world visible

25.10.2013
Theoretical physicist Frank Wilhelm-Mauch and his research team at Saarland University have developed a mathematical model for a type of microscopic test lab that could provide new and deeper insight into the world of quantum particles.

The new test system will enable the simultaneous study of one hundred light quanta (photons) and their complex quantum mechanical relationships (“quantum entanglement”) – a far greater number than was previously possible. The researchers hope to gain new insights that will be of relevance to the development of quantum computers. They are the first group worldwide to undertake such studies using a so-called “metamaterial”.

This is a specially constructed lattice of nanostructures that is able to refract light more strongly than existing natural materials. The results have recently been published in Physical Review Letters.

The physical laws that apply in the macroscopic world in which we live allow us to precisely determine the location and velocity of, say, a moving car. At any one time, the car is at a particular location and is travelling at a particular speed in a particular direction. But these laws, which are at the heart of classical physics, break down when dealing with dimensions smaller than those of an atom. In this microscopic world, the (apparently counterintuitive) laws of quantum physics prevail, where a particle, such as a photon, can be simultaneously present at different locations and can be simultaneously travelling at a range of velocities. However, little is currently known about the transition zone between these “two worlds”, where the laws of classical physics end and those of quantum physics take over. “The quantum world cannot be simply mapped onto larger, precisely determinable systems,” explains Frank Wilhelm-Mauch.

The theoretical physicist and his research group have used mathematical methods to develop a micro laboratory that is not dissimilar to a length of conventional antenna cable but that provides a controlled system with which to examine the transition between these two worlds. “We expect that quantum properties will become weaker or even disappear entirely above a certain system size. In order to be able to study this transition and the associated quantum state, we have developed a novel concept consisting of a very large test system of 100 distinguishable photons that will form the basis of measurements and that will enable these measurements to be carried out without losing a single photon. The cable itself will be made of superconducting material and the experiments will be carried out at low temperatures,” explains Professor Wilhelm-Mauch. Up until now attempts to make these sorts of measurements have suffered from significant photon losses. Using the conventional methods available today a measurement on a system of 100 photons ends up measuring only one single photon. As the light quanta can simultaneously occupy several states, any measurement, once made, can provide only a very limited view of what is an extremely complex process. A single measured value can only ever describe one of the many possible states. “That’s why we’re making our test system with 100 photons as large as is practically feasible today, as this will allows us to study these highly entangled processes. The data from such measurements should give us a much more precise view of the processes involved,” says Wilhelm-Mauch.

To do this the researchers “trick” the laws of conventional wave optics. They combine quantum optics with so-called “left-handed media” to transmit the light quanta through a metamaterial. These lattices of nanoscale structures have been the subject of research in conventional optics for quite some time and they have a very special property: light impinging on such a left-handed material is refracted more strongly than is possible in a naturally occurring material, such as water. The angle of refraction can be altered by modifying the structure of the material. The Saarbrücken physicists have come up with a mathematical model of a lattice that is tailored to microwave photons and that for the first time is good enough for quantum optic studies. The metamaterial devised by Wilhelm-Mauch’s team is a so-called “left-handed artificial transmission line” that comprises a number of minute capacitors and inductors connected in series. The resulting waveguide allows a large number of photons to be packed into a tiny spatial volume, enabling them to be transmitted within a cable. The research team wants to use this system for quantum optic measurements.

The researchers are particularly interested in the transition from the world of classical physics to the quantum world. Knowing more about this interface will improve our understanding of macroscopic systems that make use of quantum effects. For instance, research of this kind could open up new possibilities in quantum computing. “If we can find out what is the maximum size of a system that still follows quantum mechanical laws, we would be able to make storage capacity as large as this limit allows,” explains Frank Wilhelm-Mauch. The theoretical physicist is a member of the international quantum computing research network “SCALEQIT”. As part of his work within the SCALEQIT project, Wilhelm-Mauch has already developed a highly efficient microwave detector that can detect photons with 100% efficiency. Currently scientists at the University of Karlsruhe in Germany and Syracuse University in the USA are working on a prototype of the micro lab.

Original publication: Daniel Egger, Frank Wilhelm-Mauch: “Multimode Circuit Quantum Electrodynamics with Hybrid Metamaterial Transmission Lines”
Phys. Rev. Lett. 111, 163601 (2013);
doi: 10.1103/PhysRevLett.111.163601
http://prl.aps.org/abstract/PRL/v111/i16/e163601
Contact: Prof. Dr. Frank Wilhelm-Mauch:
Phone: +49 (0)681 302-2402, -3960, E-mail: fwm@lusi.uni-sb.de

Claudia Ehrlich | idw
Further information:
http://prl.aps.org/abstract/PRL/v111/i16/e163601
http://www.uni-saarland.de

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>