Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rice physicists discover ultrasensitive microwave detector

Researchers use magnets to tune supercooled gallium arsenide semiconductors

Physicists from Rice University and Princeton University have discovered how to use one of the information technology industry's mainstay materials -- gallium arsenide semiconductors -- as an ultrasensitive microwave detector that could be suitable for next-generation computers. The discovery comes at a time when computer chip engineers are racing both to add nanophotonic devices directly to microchips and to boost processor speeds beyond 10 gigahertz (GHz).

"Tunable photon-detection technology in the microwave range is not well-developed," said Rice physicist Rui-Rui Du, the study's lead author. "Single-photon detectors based on superconductors in the 10-GHz to 100-GHz range are available, but their resonance frequency has been difficult to tune. Our findings suggest that tunable single-photon detection may be within reach with ultrapure gallium arsenide."

The study, which is available online and due to appear in print this week in Physical Review Letters, is the latest result from a long-term collaboration between Du and Princeton University physicist Loren Pfeiffer, whose group produces the world's purest samples of gallium arsenide. For the new study, Rice graduate student Yanhua Dai cooled one of Pfeiffer's ultrapure samples to below 4 degrees Kelvin -- the temperature of liquid helium. She then bombarded the sample with microwaves while applying a weak magnetic field -- approximately the same strength as that of a refrigerator magnet. Du and Dai were surprised to find that microwaves of a specific wavelength resonated strongly with the cooled sample. They also found they could use the magnet to tune this resonance to specific microwave frequencies.

Du said previous experiments have typically measured weak resonance effects from microwaves. "A signal level of 1 percent is a common measurement. In our case, the change was a thousand times that much."

While the team does not yet understand the mechanism that leads to such a sensitive reaction, they are eagerly pursuing follow-up research to try to prove they can use the effect for single-photon measurements.

A photon is the smallest possible unit of light or electromagnetic radiation. By incorporating devices that create, transmit and measure digital information via photons, rather than with electrons, makers of computer chips hope to produce computers that are both faster and more powerful.

"The clock speed of a new computer right now is about 2 GHz," Du said. "For the next generation, the industry is shooting for around 100 GHz, which is a microwave device. The phenomenon we've observed is in this region, so we hope it may be useful for them."

Additional co-authors include Princeton scientist Ken West. The research was supported by the National Science Foundation.

Jade Boyd | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>