Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rice physicists discover ultrasensitive microwave detector

Researchers use magnets to tune supercooled gallium arsenide semiconductors

Physicists from Rice University and Princeton University have discovered how to use one of the information technology industry's mainstay materials -- gallium arsenide semiconductors -- as an ultrasensitive microwave detector that could be suitable for next-generation computers. The discovery comes at a time when computer chip engineers are racing both to add nanophotonic devices directly to microchips and to boost processor speeds beyond 10 gigahertz (GHz).

"Tunable photon-detection technology in the microwave range is not well-developed," said Rice physicist Rui-Rui Du, the study's lead author. "Single-photon detectors based on superconductors in the 10-GHz to 100-GHz range are available, but their resonance frequency has been difficult to tune. Our findings suggest that tunable single-photon detection may be within reach with ultrapure gallium arsenide."

The study, which is available online and due to appear in print this week in Physical Review Letters, is the latest result from a long-term collaboration between Du and Princeton University physicist Loren Pfeiffer, whose group produces the world's purest samples of gallium arsenide. For the new study, Rice graduate student Yanhua Dai cooled one of Pfeiffer's ultrapure samples to below 4 degrees Kelvin -- the temperature of liquid helium. She then bombarded the sample with microwaves while applying a weak magnetic field -- approximately the same strength as that of a refrigerator magnet. Du and Dai were surprised to find that microwaves of a specific wavelength resonated strongly with the cooled sample. They also found they could use the magnet to tune this resonance to specific microwave frequencies.

Du said previous experiments have typically measured weak resonance effects from microwaves. "A signal level of 1 percent is a common measurement. In our case, the change was a thousand times that much."

While the team does not yet understand the mechanism that leads to such a sensitive reaction, they are eagerly pursuing follow-up research to try to prove they can use the effect for single-photon measurements.

A photon is the smallest possible unit of light or electromagnetic radiation. By incorporating devices that create, transmit and measure digital information via photons, rather than with electrons, makers of computer chips hope to produce computers that are both faster and more powerful.

"The clock speed of a new computer right now is about 2 GHz," Du said. "For the next generation, the industry is shooting for around 100 GHz, which is a microwave device. The phenomenon we've observed is in this region, so we hope it may be useful for them."

Additional co-authors include Princeton scientist Ken West. The research was supported by the National Science Foundation.

Jade Boyd | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Space observation with radar to secure Germany's space infrastructure
23.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

Don't Give the Slightest Chance to Toxic Elements in Medicinal Products

23.03.2018 | Life Sciences

Sensitive grip

23.03.2018 | Materials Sciences

No compromises: Combining the benefits of 3D printing and casting

23.03.2018 | Process Engineering

Science & Research
Overview of more VideoLinks >>>