Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rewriting general relativity?

25.08.2009
Putting a new model of quantum gravity under the microscope

Does an exciting but controversial new model of quantum gravity reproduce Einstein's theory of general relativity? Scientists at Texas A&M University in the US explore this question in a paper appearing in Physical Review Letters and highlighted with a Viewpoint in the August 24th issue of Physics.

"If it ain't broke, don't fix it," sums up fairly well how many scientists have viewed Einstein's theory of general relativity. The theory, which Einstein developed in the early 20th century, says that matter curves spacetime, and it is this curvature which deflects massive bodies – an effect that we interpret as the influence of gravity. The theory has been tested to extremely high accuracy and without it, our satellite global positioning system would be off by about 10 km per day.

Despite the success of general relativity, one of the most important problems in modern physics is finding a theory of quantum gravity that reconciles the continuous nature of gravitational fields with the inherent 'graininess' of quantum mechanics. Recently, Petr Hoøava at Lawrence Berkeley Lab proposed such a model for quantum gravity that has received widespread interest, in no small part because it is one of the few models that could be experimentally tested. In Hoøava's model, Lorentz symmetry, which says that physics is the same regardless of the reference frame, is violated at small distance scales, but remerges over longer distance scales

The team at Texas A&M, which includes Hong Lu, Jianwei Mei and Christopher Pope, report their investigations into how the modifications proposed in Hoøava's theory will broadly affect the solutions of general relativity. One aspect of their study is that it leads to an important caveat, described by Horatiu Nastase in a Viewpoint commentary in Physics (physics.aps.org). Lu et al.'s calculations, explains Nastase, suggest that Hoøava's model only reproduces general relativity on unobservable scales, "larger than the size of the Universe".

Lu et al.'s paper is an important contribution to testing the Hoøava model and shows that a good deal of work remains to understand its full implications.

Also in Physics this week:

Nuclear Physics and Astrophysics: Cosmic alchemy in the laboratory

Michael Wiescher writes a Trends article in Physics (http://physics.aps.org/articles/v2/69) on how advances in experimental techniques that measure nuclear reactions that occur in stars are opening new opportunities for understanding the stellar and chemical evolution of our Universe

Quantum electronics: Attempting to mimic the physics of black holes
Analogue Hawking radiation in a dc-SQUID array transmission line
P. D. Nation et al.
[Appearing in Physical Review Letters accompanied by a Synopsis (http://physics.aps.org/synopses) in Physics]

About APS Physics

APS Physics (http://physics.aps.org) publishes expert written commentaries and highlights of papers appearing in the journals of the American Physical Society.

James Riordon | EurekAlert!
Further information:
http://www.aps.org
http://physics.aps.org

More articles from Physics and Astronomy:

nachricht The dispute about the origins of terahertz photoresponse in graphene results in a draw
25.04.2018 | Moscow Institute of Physics and Technology

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

The dispute about the origins of terahertz photoresponse in graphene results in a draw

25.04.2018 | Physics and Astronomy

Graphene origami as a mechanically tunable plasmonic structure for infrared detection

25.04.2018 | Materials Sciences

First form of therapy for childhood dementia CLN2 developed

25.04.2018 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>