Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revealing Dark Energy's Hold on the Universe

19.08.2013
The race is on to solve the mystery of dark energy, the unknown force that is causing the universe to expand faster and faster. It’s one of the biggest open questions in cosmology, but now a handful of high-profile projects are paving the way toward discovery.

A project called ACTPol in Chile, and another called SuMIRe in Hawaii, are launching massive observation campaigns that will image and map the positions of galaxies over billions of years of cosmic history.

This new picture will allow astronomers to study how dark energy has influenced the evolution of the universe. It may also help answer a question that confounds scientists today: why did dark energy kick in about 7 billion years ago, taking over the fate of the universe by causing the accelerated expansion we see today?

The Kavli Foundation recently held a roundtable discussion with three key researchers associated with two new dark energy projects: ACTPol, which stands for Atacama Cosmology Telescope – Polarization” and SuMIRe, or “Subaru Measurement of Images and Redshifts.”

“Together, we can build a big picture for how fast galaxy clusters grew at different points in cosmic history,” says David Spergel, a theoretical astrophysicist and professor at Princeton University and a leader of the ACTPol team. “And that will tell us how fast the universe was expanding at different points in time – whether it changed and how it changed.”

Says Masahiro Takada, a professor at the Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU) and a leading team member of SuMIRe: “Mapping galaxies and galaxy clusters throughout history tells us about the two dominant competing forces in the universe: the gravitational force of dark matter, which drives the growth of galaxies and galaxy clusters, and dark energy, which causes the universe to expand and pull everything apart. … So, mapping cosmic structure over time tells us the story about this ongoing competition between dark matter and dark energy.”

Michael Niemack, an assistant professor of physics at Cornell University and a leading team member of the ACTPol team, says: “We have the potential to understand cosmology from the most minute scales of particle physics, such as what dark matter might be made of, all the way to the grandest scales where dark energy is dominating the expansion today.”

On Aug. 22, Noon-12:30 pm PDT, The Kavli Foundation will host a live webcast on dark energy, featuring Michael Niemack as well as two researchers with the Dark Energy Survey: Joshua Frieman and Marcelle Soares-Santos. The three scientists will answer questions from the public during the live Google Hangout.

For the complete roundtable discussion and for information on the Aug. 22 webcast, visit: http://www.kavlifoundation.org/science-spotlights/revealing-dark-energy-hold-universe

James Cohen | Newswise
Further information:
http://www.kavlifoundation.org

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>