Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revealing new applications for carbon nanomaterials in hydrogen storage

16.03.2009
An international research team, involving Professor Rajeev Ahuja at Uppsala University and researchers in the USA, set out to understand the mechanism behind the catalytic effects of carbon nanomaterials.

Experimental and theoretical efforts were combined in a synergistic approach and the results, published this week in the ASAP section of the journal Nano Letters, will fasten efforts to develop new catalysts.

Our energy-hungry world has become increasingly dependent on new methods to store and convert energy for new, environmentally friendly modes of transportation and electrical energy generation as well as for portable electronics. Mobility — the transport of people and goods — is a socioeconomic reality that will surely increase in the coming years. Hydrogen, which can be produced with little or no harmful emissions, has been projected as a long term solution for a secure energy future. Research into safe and efficient means of hydrogen production, storage, and use is essential to make the "hydrogen economy" a reality.

Car manufactures are showing interest in using solid state hydrogen storage materials, e.g. NaAlH4, as new energy storage media. The functional properties of these materials however have to be improved by catalysts. The effect of earlier catalysts, e.g. Ti, has been difficult to explain. The current results give an unambiguous understanding of the mechanism at work in the new carbon nanomaterial catalysts.

The researchers set out to understand the mechanism behind the catalytic effects of carbon nanomaterials, specifically on the example of sodium alanate, which is a popular material for hydrogen storage studies.

"Now that the catalytic capabilities of carbon nanomaterials have been demonstrated so clearly and the mechanism that makes this behaviour possible has been understood, we expect a strong impulse on putting this effect to use in practical applications.", says Professor Rajeev Ahuja.

"Certainly, our findings have the strongest impact in the field of hydrogen storage, but beyond that, the same mechanism that we revealed can make carbon nanomaterials a very important catalyst in many other systems as well."

The extensive simulations were performed at Uppsala University's Multidisciplinary Center for Advanced Computational Science (UPPMAX).

Rajeev Ahuja | EurekAlert!
Further information:
http://www.uu.se

More articles from Physics and Astronomy:

nachricht Unconventional superconductor may be used to create quantum computers of the future
19.02.2018 | Chalmers University of Technology

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>