Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers unite to distribute quantum keys

06.07.2009
Researchers from across Europe have united to build the largest quantum key distribution network ever built. The efforts of 41 research and industrial organisations were realised as secure, quantum encrypted information was sent over an eight node, mesh network.

With an average link length of 20 to 30 kilometres, and the longest link being 83 kilometres, the researchers from organisations such as the AIT Austrian Institute of Technology (formerly Austrian Research Centers), id Quantique, Toshiba Research in the UK, Université de Genève, the University of Vienna, CNRS, Thales, LMU Munich, Siemens, and many more have broken all previous records and taken another huge stride towards practical implementation of secure, quantum-encrypted communication networks.

A journal paper, 'The SECOQC Key Distribution Network in Vienna', published as part of IOP Publishing's New Journal of Physics' Focus Issue on 'Quantum Cryptography: Theory and Practice', illustrates the operation of the network and gives an initial estimate for transmission capacity (the maximum amount of keys that can be exchanged on a quantum key distribution, QKD, network).

Undertaken in late 2008, using the company internal glass fibre ring of Siemens and 4 of its dependencies across Vienna plus a repeater station, near St. Pölten in Lower Austria, the QKD demonstration involved secure telephone communication and video-conference as well as a rerouting experiment which demonstrated the functionality of the SEcure COmmunication network based on Quantum Cryptography (SECOQC).

One of the first practical applications to emerge from advances in the sometimes baffling study of quantum mechanics, quantum cryptography has become a soon-to-be reached benchmark in secure communications.

Quantum mechanics describes the fundamental nature of matter at the atomic level and offers very intriguing, often counter-intuitive, explanations to help us understand the building blocks that construct the world around us. Quantum cryptography uses the quantum mechanical behaviour of photons, the fundamental particles of light, to enable highly secure transmission of data beyond that achievable by classical methods.

The photons themselves are used to distribute cryptographic key to access encrypted information, such as a highly sensitive transaction file that, say, a bank wishes to keep completely confidential, which can be sent along practical communication lines, made of fibre optics. Quantum indeterminacy, the quantum mechanics dictum which states that measuring an unknown quantum state will change it, means that the information cannot be accessed by a third party without corrupting it beyond recovery and therefore making the act of hacking futile.

The researchers write, "In our paper we have put forward, for the first time, a systematic design that allows unrestricted scalability and interoperability of QKD technologies."

Joseph Winters | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>