Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Putting a Freeze on Oscillator Vibrations

19.06.2009
University of Oregon physicists have successfully landed a one-two punch on a tiny glass sphere, refrigerating it in liquid helium and then dosing its perimeter with a laser beam, to bring its naturally occurring mechanical vibrations to a near standstill.

The findings, published in Nature Physics, could boost advances in information processing that exploits special quantum properties and in precision-measurements for nanotechnology.

The ability to freeze mechanical fluctuations, or vibrations, with a laser in so-called optomechanical oscillators, also opens a window on the little-explored transition between quantum and classical physics, said principal investigator Hailin Wang.

Wang, a member of the Oregon Center for Optics and a professor in the UO physics department, and his doctoral student Young-Shin Park performed the research under grants from the National Science Foundation and Army Research Laboratory through the Oregon Nanoscience and Microtechnologies Institute (ONAMI).

In nanotechnology, understanding phonons -- vibrations that carry energy -- is becoming increasingly important. For their project, Wang and Park purposely manufactured a deformed silica microsphere about 30 microns in diameter, about the size of a human hair.

A combination of cryogenic pre-cooling of the sphere to 1.4 Kelvin (minus 457.15 degrees Fahrenheit) and hitting the sphere's outer surface with a laser allowed researchers to extract energy from the mechanical oscillator and lower the level of phonon excitations to near 40 quanta. Ultimately, Wang said, the goal is to reduce that level, known as the average phonon occupation, to one quantum.

"Our goal is to get to and work with the quantum mechanical ground state in which there is very little excitation or displacement," Wang said. Reaching one quantum would require a temperature just a few thousandths of a degree from absolute zero (minus 459.67 degrees Fahrenheit).

Video with Hailin Wang is available at: http://www.youtube.com/watch?v=4Ho3rf8vPhk.

About the University of Oregon
The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of the 62 leading public and private research institutions in the United States and Canada. The UO is one of only two AAU members in the Pacific Northwest.

Source: Hailin Wang, professor of physics, UO College of Arts and Sciences, 541-346-4758 or 4807; hailin@uoregon.edu

Links:
Wang faculty page: http://physics.uoregon.edu/physics/faculty/wang.html;
Oregon Center for Optics: http://oco.uoregon.edu/index.html;
physics department: http://physics.uoregon.edu/;
College of Arts and Sciences: http://cas.uoregon.edu;
ONAMI: http://www.onami.us/

Jim Barlow | Newswise Science News
Further information:
http://www.uoregon.edu

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>