Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Superfluid at the Core of a Neutron Star

04.03.2011
Scientists at Stony Brook University, and colleagues, have discovered evidence for a superfluid state of neutrons in the neutron star at the center of the supernova remnant, Cassiopeia A. Neutron stars are the compressed remnants of supernova explosions—and are among the most inexplicable objects in the universe.

The findings, entitled, Rapid Cooling of the Neutron Star in Cassiopeia A Triggered by Neutron Superfluidity in Dense Matter, are reported in Physical Review Letters. This represents the first direct evidence for a neutron superfluid—a friction-free state of matter, at the core of a neutron star—and has important implications for understanding nuclear interaction in matter at the highest known densities.

Cassiopeia A—which is 11,000 light years from Earth—exploded as a supernova, and light from that explosion reached the Earth about 330 years ago. The explosion left behind a neutron star that became the subject of studies by the Chandra X-ray Observatory maintained by NASA. In 2010, it was reported that the star is cooling faster than first expected.

“We came to the conclusion that this cooling rate can only be explained by superfluid neutrons in the core of the star,” says James Lattimer, Ph.D., Professor of Physics and Astronomy at Stony Brook University.

In the superfluid state, the flow of the liquid encounters no resistance due to viscosity. “This unusual state of condensed matter is very rare and it has been studied in detail only at very low temperatures, for example, in liquid Helium,” explains Dr. Lattimer. “Discovering evidence for this phenomenon in a neutron star is especially interesting since the temperature, pressure and density of the material are all extremely high.”

All four authors of the Physical Review Letters paper have significant ties to Stony Brook University. Lead author Dany Page, of the National Autonomous University in Mexico, received his Ph.D. from SBU in 1989. Co-author Madappa Prakash, of Ohio University, is a former SBU faculty member. Andrew Steiner, of Michigan State University, received his Ph.D. from SBU in 2002. James Lattimer is currently Professor of Physics and Astronomy at SBU.

The Nuclear Theory group was founded by Distinguished Professor (Emeritus) Gerry Brown. “Dr. Brown and Dr. Lattimer established Nuclear Astrophysics at Stony Brook, and their collaboration produced many accomplished Ph.D. alumni,” said Laszlo Mihaly, Chairman of the Department of Physics and Astronomy at SBU. “The success of this group of researchers testifies to the legacy of Dr.Brown, a pioneer in nuclear astrophysics.”

About Stony Brook University
Part of the State University of New York system, Stony Brook University encompasses 200 buildings on 1,450 acres. In the 53 years since its founding, the University has grown tremendously, now with nearly 25,000 students and 2,200 faculty and is recognized as one of the nation’s important centers of learning and scholarship. It is a member of the prestigious Association of American Universities, and ranks among the top 100 national universities in America and among the top 50 public national universities in the country according to the 2010 U.S. News & World Report survey. Stony Brook University co-manages Brookhaven National Laboratory, joining an elite group of universities, including Berkeley, University of Chicago, Cornell, MIT, and Princeton that run federal research and development laboratories. SBU is a driving force of the Long Island economy, with an annual economic impact of $4.65 billion, generating nearly 60,000 jobs, and accounts for nearly 4% of all economic activity in Nassau and Suffolk counties, and roughly 7.5 percent of total jobs in Suffolk County.

Darren Johnson | Newswise Science News
Further information:
http://www.stonybrook.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>