Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Quantum Algorithm that Could Improve Stealth Fighter Design

22.08.2013
Researchers at the Johns Hopkins University Applied Physics Laboratory have devised a quantum algorithm for solving big linear systems of equations.

Furthermore, they say the algorithm could be used to calculate complex measurements such as radar cross sections, an ability integral to the development of radar stealth technology, among many other applications. Their research is reported in the June 18 issue of Physical Review Letters.

The field of quantum computing is still relatively young. First proposed in the 1980s, a quantum computer harnesses the principles of quantum mechanics (the physics of very small things like electrons and photons) to process information significantly faster than traditional computers. A classical computer has a memory made up of bits (units of information), where each bit represents either a one or a zero. A quantum computer maintains a sequence of qubits. Similar to a bit, a single qubit can represent a one or a zero, but it can also represent any quantum superposition of these two states, meaning it can be both a one and a zero simultaneously.

While several few-qubit systems have been built, a full-scale quantum computer is still years away. Qubits are difficult to manipulate, since any disturbance causes them to fall out of their quantum state or “decohere,” and their behavior can no longer be explained by quantum mechanics. Other larger scale non-universal computers have been built — including the much-heralded D-Wave computer, purchased by NASA and Google last month — but none of them currently have the power to replace classical computers.

Theoretical breakthroughs in quantum algorithm design are few and far between. In 1994 Peter Shor introduced a method for finding the prime factors of large numbers — a capability that would render modern cryptography vulnerable. Fifteen years later, MIT researchers presented the Quantum Linear Systems Algorithm (QLSA), that promised to bring the same type of efficiency to systems of linear equations — whose solution is crucial to image processing, video processing, signal processing, robot control, weather modeling, genetic analysis and population analysis, to name just a few applications.

“But it didn’t quite deliver; based on their process, no one could figure out how to get a useful answer out of the computer,” explains APL’s David Clader, who along with Bryan Jacobs, and Chad Sprouse wrote, “Preconditioned Quantum Linear System Algorithm.”

As presented, the algorithm had three features that made it difficult to apply to generic problem specifications and achieve the promised exponential speedup, they wrote. Technical details with setting up the problem on a quantum computer made it unclear how one would apply it to a real-world calculation. In addition, the promise of exponential speedup was only true for a very restricted set of linear systems that typically don’t exist in real-world problems. Finally, getting a useful answer from the calculation proved to be quite difficult due to intricacies with the inherently probabilistic nature of quantum measurement.

In their paper, the authors describe how they were able to solve each of these issues and extract useful information from the solution. Furthermore, they demonstrated the applicability of the algorithm by showing how to encode the problem of calculating the electromagnetic scattering cross-section, also known as radar cross section (RCS).

RCS measurements have become increasingly important to the military. It refers to the power that would be returned by an object when illuminated with radar. The power indicates how well the radar can detect or track that target, so there are ongoing efforts to reduce the RCS of such objects as missiles, ships, tanks and aircraft. With a quantum computer, APL researchers have now shown that these calculations can be done much faster and model much more complex objects than would be possible using even on the most powerful classical supercomputers.

The work was funded by the Intelligence Advanced Research Projects Activity under its Quantum Computer Science program, which explores questions relating to the computational resources required to run quantum algorithms on realistic quantum computers.

The Applied Physics Laboratory, a not-for-profit division of The Johns Hopkins University, meets critical national challenges through the innovative application of science and technology. For more information, visit www.jhuapl.edu.

Paulette Campbell | Newswise
Further information:
http://www.jhuapl.edu

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>