Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research Team Discover New Tidal Debris from Colliding Galaxies

Astronomers are announcing today that they have discovered new tidal debris stripped away from colliding galaxies.

The research will be being presented during a press conference at the 214th annual American Astronomical Society meeting in Pasadena, California by Drs. Jin Koda at Stony Brook University, Long Island, New York; Nick Scoville of California Institute of Technology; Yoshiaki Taniguchi of Ehime University, Ehime, Japan; and, the COSMOS survey team.

New debris images are of special interest since they show the full history of galaxy collisions and resultant starburst activities, which are important in 'growing' galaxies in the early Universe. In this study, new tidal debris were found with 8.2-meter Subaru telescope on Mauna Kea, Hawaii, which is operated by the National Astronomical Observatory of Japan. The international team took extremely deep exposures of archetypal colliding galaxies, including "the Antennae" galaxies in constellation Corvus (65 million light years away from us), "Arp 220" in constellation Serpens (250 million light years) and "Mrk 231" in constellation Big Dipper (590 million light years), and 10 additional objects. Often seen in public media and textbooks, these galaxies are well-known galaxy collisions.

"We did not expect such enormous debris fields around these famous objects," says Dr. Koda, Assistant Professor of Astronomy at Stony Brook University. "For instance, the Antennae – the name came from its resemblance of insect ‘antennae’ – was discovered early in 18th century by William Herschel, and has been observed repeatedly since then."

Colliding galaxies eventually merge, and become a single galaxy. When the orbit and rotation synchronize, galaxies merge quickly. New tidal tails therefore indicate the quick merging, which could be the trigger of starburst activities in Ultra Luminous Infrared Galaxy (ULIRG). Further studies and detailed comparison with theoretical model may reveal the process of galaxy formation and starbursts activities in the early Universe.

"Arp 220 is the most famous ULIRG," says Dr. Taniguchi, who is Professor of Ehime University in Japan. "ULIRGs are very likely the dominant mode of cosmic star formation in the early Universe, and Arp 220 is the key object to understand starburst activities in ULIRGs."

"The new images allow us to fully chart the orbital paths of the colliding galaxies before they merge, thus turning back the clock on each merging system," says Dr. Scoville, the Francis L. Moseley professor of astronomy at Caltech. "This is equivalent to finally being able to trace the skid marks on the road when investigating a car wreck."

According to Dr. Koda, the extent of the debris had not been seen in earlier imaging of these famous objects.

"Subaru’s sensitive wide-field camera was necessary to detect and properly analyze this faint, huge, debris," he said. "In fact, most debris are extended a few times bigger than our own Galaxy. We were ambitious to look for unknown debris, but even we were surprised to see the extent of debris in many already famous objects."

Galactic collisions are one of the most critical processes in galaxy formation and evolution in the early Universe. However, not all galactic collisions end up such large tidal debris.

‘The orbit and rotation of colliding galaxies are the keys," says Dr. Koda. "Theory predicts that large debris are produced only when the orbit and galactic rotation synchronize each other. New tidal debris are of significant importance since they put significant constrains on the orbit and history of the galactic collisions."

For more information:
• Dr. Jin Koda
• Assistant Professor at Stony Brook University, New York
• Office: +1-631-632-8063
• Cell: +1-631-624-4661
• Email:
• Dr. Nick Scoville
• Professor at California Institute of Technology, California
• Office: +1-626-395-4979
• Email:
• Dr. Yoshiaki Taniguchi
• Professor at Research Center for Space and Cosmic Evolution, Ehime University, Japan
• Office: +81-89-927-9578

Media Relations | Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>