Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research sheds light on early star formation

14.07.2009
Research by a Michigan State University scientist sheds new light on how stars and galaxies were formed back in the early days of the universe – some 13 billion years ago.

Work by Brian O’Shea, an MSU assistant professor of physics and astronomy, and two colleagues indicates that the universe’s earliest inhabitants, known as Population III stars, were not nearly as massive as originally thought. In addition, they argue that many of these stars actually formed in binary systems, that is, pairs of stars that orbit a common center.

The research will be published in the journal Science, and will appear on the Web site Science Express July 9.

“For a long time the common wisdom was that these Population III stars formed alone,” said O’Shea, who also has an appointment in MSU’s Lyman Briggs College. “Researchers also have believed that these stars were incredibly massive – up to 300 times the size of our own sun. Unfortunately, the observations just didn’t jibe with the simulations we created.”

Another clue was that so-called “metals” – all elements other than hydrogen and helium – that are now found in newer stars don’t necessarily match what was thought to be produced when the very massive first stars died.

Very old Population III stars were made essentially of hydrogen and helium. As the stars aged and exploded as supernovae, other elements were formed and these “metals” began showing up in newer stars.

“What we have here,” said O’Shea, “is a fundamental disconnect between observations and theory, because these really massive stars would have produced a different set of metal abundances than what we see in old stars in our galaxy. If a lot of the Population III stars end up being in binary systems, then overall they would be less massive and so when they inevitably died, the metals they produced would be in much better agreement with what we see observationally.”

O’Shea and his colleagues are theoretical astrophysicists, as opposed to traditional observational astronomers. They use supercomputers and custom-designed software to study the formation of cosmological structures such as galaxies.

What really drove this work, O’Shea said, was the development of faster, more powerful computers.

“All of the earlier simulations suggested that when these stars formed they were single, massive stars,” he said. “But now we have faster computers, and we’re able to work out our models to a higher level of detail. Our new simulations found that when you actually resolve everything it is possible that once the gas was going to make the stars, it was bound together tightly enough to make binary stars.”

O’Shea was one of three authors of the paper. The other two were Matthew Turk and Tom Abel of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University. To access a copy of the paper, go here.

This video is a computer simulation in which two binary stars are forming. At the end of the video, the field of view is about 2,000 astronomical units across (one astronomical unit is the distance between the Earth and sun, or about 93 million miles). Video courtesy of Matthew Turk, Tom Abel and O’Shea.

Michigan State University has been advancing knowledge and transforming lives through innovative teaching, research and outreach for more than 150 years. MSU is known internationally as a major public university with global reach and extraordinary impact. Its 17 degree-granting colleges attract scholars worldwide who are interested in combining education with practical problem solving.

Tom Oswald | EurekAlert!
Further information:
http://www.msu.edu

Further reports about: MSU Population Science TV binary stars binary system massive star

More articles from Physics and Astronomy:

nachricht Mars 2020 mission to use smart methods to seek signs of past life
17.08.2017 | Goldschmidt Conference

nachricht Gold shines through properties of nano biosensors
17.08.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>