Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research sheds light on early star formation

Research by a Michigan State University scientist sheds new light on how stars and galaxies were formed back in the early days of the universe – some 13 billion years ago.

Work by Brian O’Shea, an MSU assistant professor of physics and astronomy, and two colleagues indicates that the universe’s earliest inhabitants, known as Population III stars, were not nearly as massive as originally thought. In addition, they argue that many of these stars actually formed in binary systems, that is, pairs of stars that orbit a common center.

The research will be published in the journal Science, and will appear on the Web site Science Express July 9.

“For a long time the common wisdom was that these Population III stars formed alone,” said O’Shea, who also has an appointment in MSU’s Lyman Briggs College. “Researchers also have believed that these stars were incredibly massive – up to 300 times the size of our own sun. Unfortunately, the observations just didn’t jibe with the simulations we created.”

Another clue was that so-called “metals” – all elements other than hydrogen and helium – that are now found in newer stars don’t necessarily match what was thought to be produced when the very massive first stars died.

Very old Population III stars were made essentially of hydrogen and helium. As the stars aged and exploded as supernovae, other elements were formed and these “metals” began showing up in newer stars.

“What we have here,” said O’Shea, “is a fundamental disconnect between observations and theory, because these really massive stars would have produced a different set of metal abundances than what we see in old stars in our galaxy. If a lot of the Population III stars end up being in binary systems, then overall they would be less massive and so when they inevitably died, the metals they produced would be in much better agreement with what we see observationally.”

O’Shea and his colleagues are theoretical astrophysicists, as opposed to traditional observational astronomers. They use supercomputers and custom-designed software to study the formation of cosmological structures such as galaxies.

What really drove this work, O’Shea said, was the development of faster, more powerful computers.

“All of the earlier simulations suggested that when these stars formed they were single, massive stars,” he said. “But now we have faster computers, and we’re able to work out our models to a higher level of detail. Our new simulations found that when you actually resolve everything it is possible that once the gas was going to make the stars, it was bound together tightly enough to make binary stars.”

O’Shea was one of three authors of the paper. The other two were Matthew Turk and Tom Abel of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University. To access a copy of the paper, go here.

This video is a computer simulation in which two binary stars are forming. At the end of the video, the field of view is about 2,000 astronomical units across (one astronomical unit is the distance between the Earth and sun, or about 93 million miles). Video courtesy of Matthew Turk, Tom Abel and O’Shea.

Michigan State University has been advancing knowledge and transforming lives through innovative teaching, research and outreach for more than 150 years. MSU is known internationally as a major public university with global reach and extraordinary impact. Its 17 degree-granting colleges attract scholars worldwide who are interested in combining education with practical problem solving.

Tom Oswald | EurekAlert!
Further information:

Further reports about: MSU Population Science TV binary stars binary system massive star

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>