Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research links damaged organs to change in biochemical wave patterns

17.11.2010
By examining the distinct wave patterns formed from complex biochemical reactions within the human body, diseased organs may be more effectively identified, says Zhengdong Cheng, associate professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University, who has developed a model that simulates how these wave patterns are generated.

His findings, which appear in the October issue of the journal "Physical Review E," detail Cheng's work with a system designed to model cells in a biochemical environment, similar to what occurs inside the human body.

His system utilizes two types of resin beads to represent cells. Those beads loaded with a catalyst are referred to as active and represent living cells. Those beads that are not loaded with a catalyst are referred to as inactive and represent diseased or dead cells.

In contrast to previous experiments that have only focused on the effects of active beads, Cheng's system is the first to examine the effects of inactive beads, particularly the effects of significant increases in the inactive bead population within a system.

Because the beads within the sample represent cells, the increase in inactive beads, Cheng explains, simulates a higher percentage of dead or diseased cells within an organ, such as the heart.

What Cheng found is that as the population of inactive beads increases, the resulting wave patterns transform from target-shaped to spiral-shaped. The inference, Cheng notes, is that as tissue of an organ becomes more diseased and greater numbers of cells die, the biochemical reactions involving that organ will produce spiral wavelets instead of target wavelets.

This corresponds, Cheng notes, to observations made with electrocardiograms that reveal a change from pane-wave to spiral wavelets accompanying the procession from normal sinus rhythm to ventricular fibrillation, a cause of cardiac arrest.

Recognizing these wave patterns and what they represent, Cheng says, may lead to a better and more timely understanding of the structure of a diseased organ. This knowledge, he adds, could help determine whether an organ is becoming diseased as well as the extent of damage to an organ once it is diseased.

"For example, fibrotic nonexcitable 'dead' tissue normally presents as a small percentage of normal heart tissue," Cheng says. "As a result of aging, after a heart attack, or in the case of cardiac myopathies, the percentage of fibrotic tissue increases dramatically, up to 30 or 40 percent.

"In a scenario such as this, given our findings, we would expect to see more spiral-shaped wavelets when examining an organ that has incurred structural damage. A further increase in spiral wavelets could potentially signal an even greater percentage of structural damage to the heart," Cheng says.

Contact: Zhengdong Cheng at (979) 845-3413 or via email: cheng@chemail.tamu.edu or Ryan A. Garcia (979) 845-9237 or via email: ryan.garcia99@tamu.edu

Ryan A. Garcia | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Physics and Astronomy:

nachricht Light-emitting bubbles captured in the wild
28.02.2017 | Georg-August-Universität Göttingen

nachricht Scientists reach back in time to discover some of the most power-packed galaxies
28.02.2017 | Clemson University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>