Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The fine line between stability and instability - when do gas giants reach the point of no return?

06.12.2007
Planetary scientists at UCL have identified the point at which a star causes the atmosphere of an orbiting gas giant to become critically unstable, as reported in this week’s Nature (December 6).

Depending upon their proximity to a host star, giant Jupiter-like planets have atmospheres which are either stable and thin, or unstable and rapidly expanding. This new research enables us to work out whether planets in other systems are stable or unstable by using a three dimensional model to characterise their upper atmospheres.

Tommi Koskinen of UCL’s Physics & Astronomy Department is lead author of the paper and says: “We know that Jupiter has a thin, stable atmosphere and orbits the Sun at five Astronomical Units (AU) - or five times the distance between the Sun and the Earth. In contrast, we also know that closely orbiting exoplanets like HD209458b - which orbits about 100 times closer to its sun than Jupiter does - has a very expanded atmosphere which is boiling off into space. Our team wanted to find out at what point this change takes place, and how it happens.

“Our paper shows that if you brought Jupiter inside the Earth's orbit, to 0.16AU, it would remain Jupiter-like, with a stable atmosphere. But if you brought it just a little bit closer to the Sun, to 0.14AU, its atmosphere would suddenly start to expand, become unstable and escape. This dramatic change takes place because the cooling mechanism that we identified breaks down, leading to the atmosphere around the planet heating up uncontrollably.”

Professor Alan Aylward, co-author of the paper, explains some of the factors which the team incorporated in order to make the breakthrough: “For the first time we’ve used 3D-modelling to help us understand the whole heating process which takes place as you move a gas giant closer to its sun. The model incorporates the cooling effect of winds blowing around the planet - not just those blowing off the surface and escaping.

“Crucially, the model also makes proper allowances for the effects of H3+ in the atmosphere of a planet. This is an electrically-charged form of hydrogen which strongly radiates sunlight back into space and which is created in increasing quantities as you heat a planet by bringing it closer to its star.

“We found that 0.15AU is the significant point of no return. If you take a planet even slightly beyond this, molecular hydrogen becomes unstable and no more H3+ is produced. The self-regulating, ‘thermostatic’ effect then disintegrates and the atmosphere begins to heat up uncontrollably.”

Professor Steve Miller, the final contributing author to the paper, puts the discovery into context: “This gives us an insight to the evolution of giant planets, which typically form as an ice core out in the cold depths of space before migrating in towards their host star over a period of several million years. Now we know that at some point they all probably cross this point of no return and undergo a catastrophic breakdown.

“Just twelve years ago astronomers were searching for evidence of the first extrasolar planet. It’s amazing to think that since then we’ve not only found more than 250 of them, but we’re also in a much better position to understand where they came from and what happens to them during their lifetime.”

David Weston | alfa
Further information:
http://www.ucl.ac.uk

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>