Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Ground-Layer Adaptive-Optics System for General Astronomical Observations

30.11.2007
A team from the Isaac Newton Group of Telescopes in collaboration with scientists from Durham University in the United Kingdom and from the University of Leiden and the ASTRON institute in The Netherlands have developed and commissioned at the William Herschel Telescope on the island of La Palma the first ground-layer adaptive optics system in the world that can be used for general astronomical observations. Its purpose is to produce sharper images so that astronomers can study celestial objects in much greater detail than what is usually feasible from the ground.

The ground-layer adaptive optics system, or GLAS, works with a high-tech pulsed laser. The laser beam is projected from a small telescope mounted behind the secondary mirror of the William Herschel Telescope, producing an artificial star in the sky at an altitude of 15 kilometres. The light coming from the artificial star is detected by a sensor that measures the atmospheric distortions.

This information is used at a rate of several hundred times per second to shape a rapidly adjustable deformable mirror to take out the adverse effects of atmospheric turbulence. The somewhat low altitude of the artificial star implies that air turbulence nearer the ground is preferentially illuminated and corrected, and therefore it is usually referred to as ground-layer adaptive optics.

The importance of such a laser adaptive optics system goes beyond the immediate scientific interests at the William Herschel Telescope. Scientists are currently developing future extremely large telescopes that will have mirror diameters of thirty or even forty meters. These future huge telescopes will have to rely on adaptive optics with lasers, and correction of ground-layer turbulence will be of crucial importance.

This project was made possible through a grant from the Division for Physical Sciences of the Netherlands Organisation for Scientific Research, with assistance from the OPTICON network funded by the European Union.

The William Herschel Telescope is part of the Isaac Newton Group of Telescopes (ING). The ING is owned and operated jointly by the Science and Technology Facilities Council (STFC) of the United Kingdom, the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) of the Netherlands and the Instituto de Astrofísica de Canarias (IAC) of Spain. The telescope is located in the Spanish Observatorio del Roque de los Muchachos on La Palma, Canary Islands, Spain. The international observatory is operated by the Instituto de Astrofísica de Canarias (IAC).

BACKGROUND INFORMATION:

Even the biggest and best astronomical telescopes on the highest mountains and under pristine clear skies are hampered by the Earth’s atmosphere in their endeavour to look sharply into the cosmos. Subtle variations of air temperature cause the starlight to become distorted before it reaches the telescope. There, the rapidly changing distortions result in images from far away stars and galaxies becoming blurred, which poses a severe restriction on the capability of telescopes on the ground.

To counteract the disturbing effect of the earth’s atmosphere, scientists and engineers have developed techniques that allow them to measure and correct for the atmospheric distortions in an attempt to try to recover a perfectly sharp picture. A small mirror whose shape can be rapidly adjusted corrects for the atmospheric distortions. This technique is referred to as adaptive optics and is being used at a number of telescopes around the world, including the 4.2-m William Herschel Telescope on the island of La Palma, in the Canary Islands.

Although adaptive optics has been in operation on a regular basis for some years, the real benefits for astronomical research can only be unleashed when the technique is used in conjunction with a laser beam that generates a point source of light in the sky. This point, or artificial star, can then be used to measure the distortions caused by the Earth’s atmosphere. Without such a laser only a very small fraction of the sky can be studied, while with a laser nearly the full sky is available for scientific studies. This provides a remarkable advantage for astronomers.

It is not customary to see artificial lights at an astronomical observatory at night. Lights in general badly affect professional telescopes. The laser light used here, however, does not affect the observations because it is very well focused and works at only one very specific colour. Moreover, a system has been implemented that coordinates where all telescopes are pointing and prevents the laser from adversely affecting other telescopes.

The laser beam is only visible by the unaided eye from close to the telescope building. Time exposures clearly show the green laser beam coming from the telescope. The artificial star that the laser produces is much too faint to be seen by the unaided eye, but is of course bright enough to be seen with the telescope.

Javier Méndez | alfa
Further information:
http://www.ing.iac.es/PR/press/ing42007.html

More articles from Physics and Astronomy:

nachricht Scientists propose synestia, a new type of planetary object
23.05.2017 | University of California - Davis

nachricht Turmoil in sluggish electrons’ existence
23.05.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>