Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Ground-Layer Adaptive-Optics System for General Astronomical Observations

30.11.2007
A team from the Isaac Newton Group of Telescopes in collaboration with scientists from Durham University in the United Kingdom and from the University of Leiden and the ASTRON institute in The Netherlands have developed and commissioned at the William Herschel Telescope on the island of La Palma the first ground-layer adaptive optics system in the world that can be used for general astronomical observations. Its purpose is to produce sharper images so that astronomers can study celestial objects in much greater detail than what is usually feasible from the ground.

The ground-layer adaptive optics system, or GLAS, works with a high-tech pulsed laser. The laser beam is projected from a small telescope mounted behind the secondary mirror of the William Herschel Telescope, producing an artificial star in the sky at an altitude of 15 kilometres. The light coming from the artificial star is detected by a sensor that measures the atmospheric distortions.

This information is used at a rate of several hundred times per second to shape a rapidly adjustable deformable mirror to take out the adverse effects of atmospheric turbulence. The somewhat low altitude of the artificial star implies that air turbulence nearer the ground is preferentially illuminated and corrected, and therefore it is usually referred to as ground-layer adaptive optics.

The importance of such a laser adaptive optics system goes beyond the immediate scientific interests at the William Herschel Telescope. Scientists are currently developing future extremely large telescopes that will have mirror diameters of thirty or even forty meters. These future huge telescopes will have to rely on adaptive optics with lasers, and correction of ground-layer turbulence will be of crucial importance.

This project was made possible through a grant from the Division for Physical Sciences of the Netherlands Organisation for Scientific Research, with assistance from the OPTICON network funded by the European Union.

The William Herschel Telescope is part of the Isaac Newton Group of Telescopes (ING). The ING is owned and operated jointly by the Science and Technology Facilities Council (STFC) of the United Kingdom, the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) of the Netherlands and the Instituto de Astrofísica de Canarias (IAC) of Spain. The telescope is located in the Spanish Observatorio del Roque de los Muchachos on La Palma, Canary Islands, Spain. The international observatory is operated by the Instituto de Astrofísica de Canarias (IAC).

BACKGROUND INFORMATION:

Even the biggest and best astronomical telescopes on the highest mountains and under pristine clear skies are hampered by the Earth’s atmosphere in their endeavour to look sharply into the cosmos. Subtle variations of air temperature cause the starlight to become distorted before it reaches the telescope. There, the rapidly changing distortions result in images from far away stars and galaxies becoming blurred, which poses a severe restriction on the capability of telescopes on the ground.

To counteract the disturbing effect of the earth’s atmosphere, scientists and engineers have developed techniques that allow them to measure and correct for the atmospheric distortions in an attempt to try to recover a perfectly sharp picture. A small mirror whose shape can be rapidly adjusted corrects for the atmospheric distortions. This technique is referred to as adaptive optics and is being used at a number of telescopes around the world, including the 4.2-m William Herschel Telescope on the island of La Palma, in the Canary Islands.

Although adaptive optics has been in operation on a regular basis for some years, the real benefits for astronomical research can only be unleashed when the technique is used in conjunction with a laser beam that generates a point source of light in the sky. This point, or artificial star, can then be used to measure the distortions caused by the Earth’s atmosphere. Without such a laser only a very small fraction of the sky can be studied, while with a laser nearly the full sky is available for scientific studies. This provides a remarkable advantage for astronomers.

It is not customary to see artificial lights at an astronomical observatory at night. Lights in general badly affect professional telescopes. The laser light used here, however, does not affect the observations because it is very well focused and works at only one very specific colour. Moreover, a system has been implemented that coordinates where all telescopes are pointing and prevents the laser from adversely affecting other telescopes.

The laser beam is only visible by the unaided eye from close to the telescope building. Time exposures clearly show the green laser beam coming from the telescope. The artificial star that the laser produces is much too faint to be seen by the unaided eye, but is of course bright enough to be seen with the telescope.

Javier Méndez | alfa
Further information:
http://www.ing.iac.es/PR/press/ing42007.html

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>