Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Ground-Layer Adaptive-Optics System for General Astronomical Observations

30.11.2007
A team from the Isaac Newton Group of Telescopes in collaboration with scientists from Durham University in the United Kingdom and from the University of Leiden and the ASTRON institute in The Netherlands have developed and commissioned at the William Herschel Telescope on the island of La Palma the first ground-layer adaptive optics system in the world that can be used for general astronomical observations. Its purpose is to produce sharper images so that astronomers can study celestial objects in much greater detail than what is usually feasible from the ground.

The ground-layer adaptive optics system, or GLAS, works with a high-tech pulsed laser. The laser beam is projected from a small telescope mounted behind the secondary mirror of the William Herschel Telescope, producing an artificial star in the sky at an altitude of 15 kilometres. The light coming from the artificial star is detected by a sensor that measures the atmospheric distortions.

This information is used at a rate of several hundred times per second to shape a rapidly adjustable deformable mirror to take out the adverse effects of atmospheric turbulence. The somewhat low altitude of the artificial star implies that air turbulence nearer the ground is preferentially illuminated and corrected, and therefore it is usually referred to as ground-layer adaptive optics.

The importance of such a laser adaptive optics system goes beyond the immediate scientific interests at the William Herschel Telescope. Scientists are currently developing future extremely large telescopes that will have mirror diameters of thirty or even forty meters. These future huge telescopes will have to rely on adaptive optics with lasers, and correction of ground-layer turbulence will be of crucial importance.

This project was made possible through a grant from the Division for Physical Sciences of the Netherlands Organisation for Scientific Research, with assistance from the OPTICON network funded by the European Union.

The William Herschel Telescope is part of the Isaac Newton Group of Telescopes (ING). The ING is owned and operated jointly by the Science and Technology Facilities Council (STFC) of the United Kingdom, the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) of the Netherlands and the Instituto de Astrofísica de Canarias (IAC) of Spain. The telescope is located in the Spanish Observatorio del Roque de los Muchachos on La Palma, Canary Islands, Spain. The international observatory is operated by the Instituto de Astrofísica de Canarias (IAC).

BACKGROUND INFORMATION:

Even the biggest and best astronomical telescopes on the highest mountains and under pristine clear skies are hampered by the Earth’s atmosphere in their endeavour to look sharply into the cosmos. Subtle variations of air temperature cause the starlight to become distorted before it reaches the telescope. There, the rapidly changing distortions result in images from far away stars and galaxies becoming blurred, which poses a severe restriction on the capability of telescopes on the ground.

To counteract the disturbing effect of the earth’s atmosphere, scientists and engineers have developed techniques that allow them to measure and correct for the atmospheric distortions in an attempt to try to recover a perfectly sharp picture. A small mirror whose shape can be rapidly adjusted corrects for the atmospheric distortions. This technique is referred to as adaptive optics and is being used at a number of telescopes around the world, including the 4.2-m William Herschel Telescope on the island of La Palma, in the Canary Islands.

Although adaptive optics has been in operation on a regular basis for some years, the real benefits for astronomical research can only be unleashed when the technique is used in conjunction with a laser beam that generates a point source of light in the sky. This point, or artificial star, can then be used to measure the distortions caused by the Earth’s atmosphere. Without such a laser only a very small fraction of the sky can be studied, while with a laser nearly the full sky is available for scientific studies. This provides a remarkable advantage for astronomers.

It is not customary to see artificial lights at an astronomical observatory at night. Lights in general badly affect professional telescopes. The laser light used here, however, does not affect the observations because it is very well focused and works at only one very specific colour. Moreover, a system has been implemented that coordinates where all telescopes are pointing and prevents the laser from adversely affecting other telescopes.

The laser beam is only visible by the unaided eye from close to the telescope building. Time exposures clearly show the green laser beam coming from the telescope. The artificial star that the laser produces is much too faint to be seen by the unaided eye, but is of course bright enough to be seen with the telescope.

Javier Méndez | alfa
Further information:
http://www.ing.iac.es/PR/press/ing42007.html

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>