Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Tiny Difference that Created the Universe

07.05.2002


Roughly 15 billion years ago, during the Big Bang, equal amounts of matter and anti-matter should have been created, with an anti-particle for every particle created. Yet when matter and anti-matter meet, they both disappear in a flash of light, so why didn’t they annihilate each other completely? For some reason, during the first moments of the Big Bang, although lots of matter and anti-matter did meet and annihilate, we were left with a slight surplus of matter, which makes up the Universe today. Whilst grateful for our existence, scientists have been struggling for many years to find an explanation. A new laboratory just completed at the University of Sussex will test one of the possible answers.



The researchers at Sussex believe that the surviving matter must have a special kind of asymmetry in order to explain its survival. They think that the negative charge of the electron must be pushed over to one side instead of being centred. This offset is so tiny, that even if the electron were enlarged to the size of the Earth, the offset would only be the size of an atom. A similar effect is predicted in the neutron where the positive and negative charges within it may also be displaced. It could be thanks to this tiny effect, called an electric dipole moment that the Universe itself exists.

Scientific theory can predict how big this electric dipole moment should be, but to actually look for it, researchers need the latest in low temperature equipment and lasers. The new laboratory, the Centre for the Measurement of Particle Electric Dipole Moments, has been equipped with a £1.7 million award from the Joint Infrastructure Fund and offers the
possibility of a breakthrough in the near future.



Professor Ed Hinds, the director of the new centre, said: “This is a unique and very exciting project. We hope eventually to find out what happened between ‘matter’ and ‘anti-matter’ when the Universe was created.”

Dr Alun Anderson, Editor in Chief of the New Scientist and a Sussex alumnus will open the Centre on May 14th.

Julia Maddock | alphagalileo

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>