Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ultracold Atoms Form Long-Lasting Waves


At sufficiently cold temperatures, the atoms in a gas can form what is known as a Bose-Einstein condensate (BEC), losing their individual identities and merging into a single quantum state. The phenomenon has fascinated physicists ever since gaseous BECs were created in the laboratory in 1995 (although the possiblity was first postulated some 70 years earlier), and a flurry of recent research has uncovered all kinds of remarkable condensate properties. Now researchers writing in the journal Nature have yet another discovery to add to that list. According to the report, BEC atoms trapped in a thin beam of light and forced to march single file can form atom waves that maintain a constant shape while propagating.

Image: Courtesy of Rice University

In their experiments, Randall G. Hulet of Rice University and his colleagues observed localized wave packets, or solitons, of lithium atoms traveling great distances--over a period of up to several seconds--without spreading. Caravans of up to 15 solitons were detected. The key appears to have been causing the atoms to attract one another, thus offsetting their natural tendency to disperse. Although this represents the first observed instance of so-called bright matter-wave soliton trains, localized wave bundles themselves are well known in high-speed optical communications networks, in which solitons of light enable the transfer of data across great distances without the help of signal boosters.

If you’re wondering what, exactly, such atomic soliton trains might be useful for down the road, the short answer is that it’s difficult to say. The authors speculate, however, that precision measurement applications such as atom interferometry might benefit from an atomic soliton laser, based on solitons like the ones they observed. "Forty years ago no one imagined that lasers would be used to play music in our cars or scan our food at the grocery store checkout," Hulet muses. "We’re getting our first glimpse of a wondrous and sometimes surprising set of dynamic quantum phenomena, and there’s no way to know exactly what may come of it."

Kate Wong | Scientific American

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>