Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Camera Flash Prompts Carbon Nanotube Combustion

30.04.2002


Image: © Science


It sounds like a photographer’s worst nightmare: the light of the flashbulb causes the subject of the photo to burst into flames. But that’s exactly what happened recently when researchers snapped a picture of some single-walled carbon nanotubes, tiny cylinders of pure carbon. The findings, described in a report published in the current issue of the journal Science, suggest that the minute straws could be used as triggering devices or for remote light-induced ignition.

The discovery was made by accident, when an undergraduate in Pulickel Ajayan’s laboratory at the Rensselaer Polytechnic Institute took some flash photographs as part of a different research project. "The single-walled carbon nanotube samples in this situation were just a jumble of tubes," Ajayan recalls. "They were not laid out in any pattern, and because of that, the heat generated from the flash could not dissipate, so the nanotubes just burned." Ajayan and his colleagues note in their report that only single-walled carbon nanotubes react to flash light in this explosive manner, emitting a loud pop before igniting [see image]. Because extensive rearrangement of the carbon atoms occurs, the scientists estimate that the tubes reach temperatures of nearly 1,500 degrees Celsius. Interestingly, if the single-walled straws are exposed to a camera flash in an environment devoid of oxygen, they do not burn, but their atomic structure is still altered.

The work adds to the ever growing list of unique characteristics of the tiny carbon cylinders. Their fortuitous discovery has not yet been put to work, but study co-author Ganapathiraman Ramanath of Rensselaer has plenty of ideas. "From an applications perspective, our work opens up exciting possibilities of using low-power light sources to create new forms of nanomaterials," he says, "and will serve as a starting point for developing nanotube-based actuators and sensors that rely on remote activation and triggering."


Sarah Graham | Scientific American

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>