Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite shows regional variation in warming from sun during solar cycle

15.11.2007
A NASA satellite designed, built and controlled by the University of Colorado at Boulder is expected to help scientists resolve wide-ranging predictions about the coming solar cycle peak in 2012 and its influence on Earth's warming climate, according to the chief scientist on the project.

Senior Research Associate Tom Woods of CU-Boulder's Laboratory for Atmospheric and Space Physics said the brightening of the sun as it approaches its next solar cycle maximum will have regional climatic impacts on Earth. While some scientists predict the next solar cycle -- expected to start in 2008 -- will be significantly weaker than the present one, others are forecasting an increase of up to 40 percent in the sun's activity, said Woods.

Woods is the principal investigator on NASA's $88 million Solar Radiation and Climate Experiment, or SORCE, mission, launched in 2003 to study how and why variations in the sun affect Earth's atmosphere and climate. In August, NASA extended the SORCE mission through 2012. The extension provides roughly $18 million to LASP, which controls SORCE from campus by uploading commands and downloading data three times daily to the Space Technology Building in the CU Research Park.

Solar cycles, which span an average of 11 years, are driven by the amount and size of sunspots present on the sun's surface, which modulate brightness from the X-ray to infrared portion of the electromagnetic spectrum. The current solar cycle peaked in 2002.

Solar activity alters interactions between Earth's surface and its atmosphere, which drive global circulation patterns, said Woods. While warming on Earth from increased solar brightness is modest compared to the natural effects of volcanic eruptions, cyclical weather patterns like El Nino or human emissions of greenhouse gases, regional temperature changes can vary by a factor of eight.

During the most recent solar maximum, for example, the global mean temperature rise on Earth due to solar-brightness increases was only about 0.2 degrees Fahrenheit, said Woods. But parts of the central United States warmed by 0.7 degrees F, and a region off the coast of California even cooled slightly. A paper on the coming decade of solar activity by Woods and Judith Lean of the Naval Research Laboratory in Washington, D.C., was published online Oct. 30 in the scientific newsletter, Eos.

"It was very important to the climate change community that SORCE was extended, because it allows us to continue charting the solar irradiance record in a number of wavelengths without interruption," Woods said. "Even relatively small changes in solar output can significantly affect Earth because of the amplifying affect in how the atmosphere responds to solar changes."

With mounting concern over the alteration of Earth's surface and atmosphere by humans, it is increasingly important to understand natural "forcings" on the sun-Earth system that impact both climate and space weather, said Woods. Such natural forcing includes heat from the sun's radiation that causes saltwater and freshwater evaporation and drives Earth's water cycle.

Increases in UV radiation from the sun also heat up the stratosphere -- located from 10 miles to 30 miles above Earth -- which can cause significant changes in atmospheric circulation patterns over the planet, affecting Earth's weather and climate, he said. "We will never fully understand the human impact on Earth and its atmosphere unless we first establish the natural effects of solar variability."

SORCE also is helping scientists better understand violent space weather episodes triggered by solar flares and coronal mass ejections that affect the upper atmosphere and are more prevalent in solar maximum and declining solar cycle phases, said Woods. The severe "Halloween Storms" in October and November 2003 disrupted GPS navigation and communications, causing extensive and costly rerouting of commercial "over-the-poles" jet flights to lower latitudes, he said.

Woods also is the principal investigator on a $30 million instrument known as the Extreme Ultraviolet Variability Experiment, or EVE, one of three solar instruments slated for launch on NASA's Solar Dynamic Observatory in December 2008. Designed and built at LASP and delivered to NASA's Goddard Space Flight Center in Maryland last September, EVE will measure precise changes in the sun's UV brightness, providing space weather forecasters with early warnings of potential communications and navigation outages.

About one-third of the annual SORCE budget goes for commanding and controlling the satellite, roughly one-third for producing public data sets and one-third for analyzing how and why the sun is changing, he said. "CU-Boulder students are our lifeblood," said Woods. "They are involved in all aspects of the SORCE mission, from uploading commands to the spacecraft to analyzing data."

Tom Woods | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>