Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart dust, gassy antennas, and warp speed calculations

14.11.2007
News from the American Physical Society

Tracking Flow with Smart Dust

Y. Gasteuil, W.L. Shew, M. Gibert, F. Chill'a, B. Castaing and J.-F. Pinton
Physical Review Letters (forthcoming)
Tiny probes packed with instrumentation have been turned loose in a laboratory in France. The marble-sized devices are an important step on the road to long-anticipated miniaturized machines known as smart dust (picture the artificial swarm in Michael Creighton's "Prey," only without the bloodlust). The small and simple machines are being developed to be released in large numbers to collect data about the motion of fluid systems such as ocean currents and atmospheric winds.

The two centimeter probes are on the large side for smart dust (typically, miniature machines must fill a volume of a cubic centimeter or less to make the cut), still the probes' abilities are impressive for their size. They float freely underwater, measure local temperatures down to a millionth of a degree Kelvin, and send it all back wirelessly. Previous devices used for similar measurements had to remain above water or stay in one place.

The team of physicists that made the smart particles at the Université de Lyon used them to track the paths of tiny heat packets that travel through fluids, showing that the packets follow a regular pattern. The researchers are hopeful that the device will teach them more about the motion of particles in turbulent systems, including hurricanes and mixtures of reactive chemicals. - CC


Stealthy, Versatile, and Jam Resistant Antennas made of Gas
T. R. Anderson and I. Alexeff
2007 APS Division of Plasma Physics annual meeting
November 12, 2007
A new antenna made of plasma (a gas heated to the point that the electrons are ripped free of atoms and molecules) works just like conventional metal antennas, except that it vanishes when you turn it off. That's important on the battlefield and in other applications where antennas need to be kept out of sight. In addition, unlike metal antennas, the electrical characteristics of a plasma antenna can be rapidly adjusted to counteract signal jamming attempts.

Plasma antennas behave much like solid metal antennas because electrons flow freely in the hot gas, just as they do in metal conductors. But plasmas only exist when the gasses they're made of are very hot. The moment the energy source heating a plasma antenna is shut off, the plasma turns back into a plain old (non conductive) gas. As far as radio signals and antenna detectors go, the antenna effectively disappears when the plasma cools down.

The antenna design being presented at next week's APS Division of Plasma Physics meeting in Orlando consists of gas-filled tubes reminiscent of neon bulbs. The physicists presenting the design propose that an array of many small plasma elements could lead to a highly versatile antenna that could be reconfigured simply by turning on or off various elements. - JR


Warp Speed Improves Calculations a Million Times
J.-L. Vay
2007 APS Division of Plasma Physics annual meeting
November 16, 2007
Thanks to Einstein, physicists know that the world looks different depending on how fast you're moving. A new analysis shows that it a lot prettier (mathematically speaking) if you're moving at just the right speed, leading to an improvement in calculations describing colliding particle beams and lasers by factors of a million or so.

One of the foundations of Einstein's Special Relativity is that no particular frame of reference is better than any other - whether you're sitting on the couch or barreling through space on a rocket, physics doesn't change. On the other hand, as many physics undergrads learn, choosing the right reference frame can simplify your homework problems a lot.

Jean-Luc Vay has found that the same is true for calculations that describe what happens when particles smash together at nearly the speed of light in machines like the forthcoming Large Hadron Collider experiment in Geneva. But instead of saving a few hours of homework time, Vay's analysis shows a surprising million-fold improvement in calculation speed.

The discovery should allow much higher precision analyses of high energy physics experiments as well as helping physicists to model interactions that were previously just too computationally intensive to consider. - JR

James Riordon | EurekAlert!
Further information:
http://www.aps.org

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>