Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big bangs spark row

26.04.2002


Cosmologists claim Universe has been forming and reforming for eternity.


New maths spawns new model.



The Universe was not born in one Big Bang, it has been going through cycles of creation and annihilation for eternity, according to a controversial new mathematical model1.

It’s a compelling claim. The new cyclic model removes a major stumbling block common to existing theories of the Universe - namely, that physics can’t explain what came before the Big Bang.


Because the model relies on new mathematics, it is having some teething problems, admit its proposers. Indeed, most cosmologists are treating the hypothesis with interested scepticism. Some are vociferously critical.

Criticism is to be expected, concedes Neil Turok of Cambridge University, UK, who developed the cyclic model with cosmologist Paul Steinhardt of Princeton University in New Jersey. "We’re taking on some very fundamental issues here," says Turok.

Strings attached

Steinhardt and Turok draw on the emerging science of string theory. This mathematical idea uses up to ten dimensions - instead of the usual four - to explain the weird behaviour of tiny things in physics called fundamental particles.

When applied to big things like cosmology, string theory invokes weird mathematical entities called membranes - branes for short. In the cyclic model there are two branes at any one time, one containing our Universe, the other a parallel Universe that is the mirror image of our own.

The researchers suggest that these branes regularly collide, as they did 15 billion years ago, resulting in the massive release of energy previously ascribed to the Big Bang. And just like the Big Bang, "this collision made all the radiation and matter that fills the Universe," says Turok.

The branes are then flung apart. The Universes on each brane expand outwards over billions of years, as ours is doing today.

According to the model, a fifth dimension that we can’t see or travel through bridges the branes. As each Universe expands, its matter and energy spreads ever thinner and is diluted. When the spring-like fifth dimension overcomes this expansion energy it heaves the branes back together, they collide, and the whole process repeats. "It’s just like reproduction in biology," says Turok.

As well as solving the problem of what came before the Big Bang, the cyclic model could explain numerous other cosmological conundrums, such as dark energy. Our Universe should contain more energy than can be measured, and there are no good theories to explain why. Turok and Steinhardt’s model suggests that this is because energy, in the form of gravity, leaks across the fifth dimension between our Universe and its complementary braneworld.

No braner?

Steinhardt and Turok’s idea sounds appealing, but fellow astrophysicists are not greeting it with open arms. "The community is very, very sceptical," says David Lyth, a cosmologist at the University of Lancaster, UK.

Others are more scathing. "It’s a very bad idea popular only among journalists," says one of the chief critics of the cyclic model, Andrei Linde of Stanford University, California. "It’s an extremely complicated theory and simply does not work," adds Linde, the originator of a rival model of the Universe.

String theory is still in its infancy, and applying it to cosmology stretches it to its limits, explains Cambridge University cosmologist George Efstathiou. "Its connection to fundamental physics is really rather weak," he says, so until string theory matures, models that use it will be flawed and misunderstood. But on the whole, he says, "the cyclic model is a cute idea and some elements of it may survive."

Steinhardt and Turok agree that problems with the mathematics could be their undoing. "There may be disasters waiting for us at higher levels of calculation," says Turok. But, if it does add up, their theory overturns many ideas about the Universe, they say - like time and space being created in a Big Bang.

References

  1. Steinhardt, P. J. & Turok, N. A. Cyclic model of the Universe. Science, published online April 25 (2002).

TOM CLARKE | © Nature News Service

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>