Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dwarf galaxies need dark matter too

26.10.2007
Stars in dwarf spheroidal galaxies behave in a way that suggests the galaxies are utterly dominated by dark matter, University of Michigan astronomers have found.

Astronomy professor Mario Mateo and post-doctoral researcher Matthew Walker measured the velocity of 6,804 stars in seven dwarf satellite galaxies of the Milky Way: Carina, Draco, Fornax, Leo I, Leo II, Sculptor and Sextans. They found that, contrary to what Newton's law of gravity predicts, stars in these galaxies do not move slower the farther they are from their galaxy's core.

"These galaxies show a problem right from the center," Mateo said. "The velocity doesn't get smaller. It just stays the same, which is eerie."

Astronomers already know stars in spiral galaxies behave in a similar way. This research dramatically increases the available information about smaller galaxies, making it possible to confirm that the distribution of light and stars in them is not the same as the distribution of mass.

"We have more than doubled the amount of data having to do with these galaxies, and that allows us to study them in an unprecedented manner. Our research shows that dwarf galaxies are utterly dominated by dark matter, so long as Newtonian gravity adequately describes these systems," Walker said. Walker received his doctorate from U-M earlier this year and currently has a post-doctoral position at the University of Cambridge in the United Kingdom.

Dark matter is a substance astronomers have not directly observed, but they deduce it exists because they detect its gravitational effects on visible matter. Based on these measurements, the prevailing theory in astronomy and cosmology is that the visible parts of the universe make up only a fraction of its total matter and energy.

The planet Neptune was once "dark matter," Mateo said. Before the term was even coined, astronomers predicted its existence based on an anomaly in the orbit of Neptune's neighbor Uranus. They knew just where to look for Neptune.

For the past quarter century, astronomers have been looking for the Neptune of the universe, so to speak. Dark matter could take the form of dwarf stars and planets, elementary particles including neutrinos, or hypothetical and as-yet undetected particles that don't interact with visible light or other parts of the electromagnetic spectrum.

Dark matter is believed to hold galaxies together. The gravitational force of the visible matter is not considered strong enough to prevent stars from escaping. Other theories exist to explain these discrepancies, though. For example, Modified Newtonian Dynamics, Mateo said, proposes that gravitational forces become stronger when accelerations are very weak. While their results align with current dark matter models, Mateo and Walker say they also bolster this less-popular explanation.

"These dwarf galaxies are not much to look at," Mateo continued, "but they may really alter our fundamental views on the nature of dark matter and, perhaps, even gravity."

Walker will present a paper on these findings on Oct. 30 at the Magellan Science Meeting in Cambridge, Mass. The paper he will present is Velocity Dispersion Profiles of Seven Dwarf Spheroidal Galaxies. It was published in the Sept. 20 edition of Astrophysical Journal Letters.

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu

More articles from Physics and Astronomy:

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

nachricht Tracking a solar eruption through the solar system
16.08.2017 | American Geophysical Union

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>