Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dwarf galaxies need dark matter too

26.10.2007
Stars in dwarf spheroidal galaxies behave in a way that suggests the galaxies are utterly dominated by dark matter, University of Michigan astronomers have found.

Astronomy professor Mario Mateo and post-doctoral researcher Matthew Walker measured the velocity of 6,804 stars in seven dwarf satellite galaxies of the Milky Way: Carina, Draco, Fornax, Leo I, Leo II, Sculptor and Sextans. They found that, contrary to what Newton's law of gravity predicts, stars in these galaxies do not move slower the farther they are from their galaxy's core.

"These galaxies show a problem right from the center," Mateo said. "The velocity doesn't get smaller. It just stays the same, which is eerie."

Astronomers already know stars in spiral galaxies behave in a similar way. This research dramatically increases the available information about smaller galaxies, making it possible to confirm that the distribution of light and stars in them is not the same as the distribution of mass.

"We have more than doubled the amount of data having to do with these galaxies, and that allows us to study them in an unprecedented manner. Our research shows that dwarf galaxies are utterly dominated by dark matter, so long as Newtonian gravity adequately describes these systems," Walker said. Walker received his doctorate from U-M earlier this year and currently has a post-doctoral position at the University of Cambridge in the United Kingdom.

Dark matter is a substance astronomers have not directly observed, but they deduce it exists because they detect its gravitational effects on visible matter. Based on these measurements, the prevailing theory in astronomy and cosmology is that the visible parts of the universe make up only a fraction of its total matter and energy.

The planet Neptune was once "dark matter," Mateo said. Before the term was even coined, astronomers predicted its existence based on an anomaly in the orbit of Neptune's neighbor Uranus. They knew just where to look for Neptune.

For the past quarter century, astronomers have been looking for the Neptune of the universe, so to speak. Dark matter could take the form of dwarf stars and planets, elementary particles including neutrinos, or hypothetical and as-yet undetected particles that don't interact with visible light or other parts of the electromagnetic spectrum.

Dark matter is believed to hold galaxies together. The gravitational force of the visible matter is not considered strong enough to prevent stars from escaping. Other theories exist to explain these discrepancies, though. For example, Modified Newtonian Dynamics, Mateo said, proposes that gravitational forces become stronger when accelerations are very weak. While their results align with current dark matter models, Mateo and Walker say they also bolster this less-popular explanation.

"These dwarf galaxies are not much to look at," Mateo continued, "but they may really alter our fundamental views on the nature of dark matter and, perhaps, even gravity."

Walker will present a paper on these findings on Oct. 30 at the Magellan Science Meeting in Cambridge, Mass. The paper he will present is Velocity Dispersion Profiles of Seven Dwarf Spheroidal Galaxies. It was published in the Sept. 20 edition of Astrophysical Journal Letters.

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>