Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silicon Photonics Awarded Major Research Funding

26.10.2007
The Engineering and Physical Sciences Research Council (EPSRC) has awarded a grant valued at £5m to a consortium of researchers in the UK, led by the University of Surrey, to work on Silicon Photonics.

This is the largest current grant awarded by the EPSRC through responsive mode in the Photonics area as the EPSRC moves towards encouraging the community to use larger, longer responsive mode grants.

The consortium, led by Professor Graham Reed and Dr Goran Mashanovich, both from the Advanced Technology Institute (ATI), University of Surrey, includes researchers from St Andrews University (led by Professor Thomas Krauss), Leeds University (led by Dr Robert Kelsall), Warwick University (led by Dr David Leadley), and Southampton University (led by Dr Graham Ensell). Industrial representation within the consortium comes from QinetiQ (led by Professor Mike Jenkins) and from Intel (led by Dr Mario Paniccia).

Silicon Photonics promises to revolutionise the next generation of integrated circuits ICs by providing solutions for optical interconnections between chips and circuit boards, optical signal processing, optical sensing, and the “lab-on-a-chip” biological applications. It is also expected to provide low-cost optical signal processing chips that will interface with optical fibres brought directly to the home that can take advantages of the enormous bandwidth of Fibre To The Premise (FTTP) technology. Services such as video-on-demand, high speed internet, high definition TV and IPTV, that require large bandwidths, may also expand dramatically as a result of this work. Silicon is the material of choice for the microelectronics industry, partly due to the cost effective way in which it can be processed. Therefore, integrating both optical functionality and electrical intelligence into the same silicon chip is expected to deliver a cost advantage as compared to more conventional optical technologies.

The consortium will contribute to the “second silicon revolution” by building on early successes that have already been demonstrated by the partners. Reed, Krauss and Ensell have all been pioneering silicon photonic technology for more than a decade and their expertise coupled with complementary expertise of the UK consortium members and of the Intel team in Santa Clara, USA is likely to result in significant, industrially relevant breakthroughs in Silicon Photonics.

Professor Reed emphasised the importance of the grant by stating, “We are delighted that the EPSRC has given us this exciting opportunity to contribute to the development of Silicon Photonics to a level where it can have a positive impact upon people’s lives. As a team we are committed to providing technology suitable for industrial take-up.”

Professor Ravi Silva, Director of the Advanced Technology Institute said, “The ATI prides itself in providing industrially relevant solutions based on pioneering fundamental research. This consortium of researchers has the potential to provide the next photonic superchip that will form the backbone to the next generation semiconductor industry.”

The ATI at the University of Surrey will be holding an Open Day to celebrate five years of operations on Monday, December 3. For more details please visit http://www.ati.surrey.ac.uk/OpenDay

Stuart Miller | alfa
Further information:
http://www.ati.surrey.ac.uk/OpenDay

More articles from Physics and Astronomy:

nachricht Midwife and signpost for photons
11.12.2017 | Julius-Maximilians-Universität Würzburg

nachricht New research identifies how 3-D printed metals can be both strong and ductile
11.12.2017 | University of Birmingham

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>