Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers get their hands dirty as they lift the veil on galactic dust

12.10.2007
There is more to a grain of dust than meets the eye, at least for astronomers as they attempt to probe deeper into distant galaxies. Until now dust has been a nuisance because it has obscured galaxies, and the stars within them, by absorbing the radiation they emit.

But more recently dust has started to present opportunities because it emits radiation itself as a consequence of being heated up by nearby stars. Aided by new observing instruments and sophisticated computer software, this radiation enables astronomers to reconstruct what lies behind the dust. Furthermore the dust itself plays a vital role in star formation within galaxies.

The stage was set for dramatic advances in the study of galactic dust in a recent workshop funded by the European Science Foundation (ESF)'s Exploratory Workshop. The big breakthrough is the ability to detect the dust at much higher resolution from its infrared radiation, according to Simone Bianchi, co-convenor of the ESF workshop. "It has been possible to do this since the eighties, but the new instruments have a higher sensitivity," said Bianchi.

At the same time new computer models are making it possible to work out the structure of the galaxy lying behind the dust, even though it cannot be observed directly at any wavelength. The key here is that the dust is acting as a relay for radiation emitted by the stars behind it. The dust absorbs high energy radiation from the stars and then heats up as a result. It then re-emits in the infra red waveband, which can now be detected with sensitive new instruments.

Plans were made at the workshop to use the European Space Agency's new infrared space telescope called Herschel, which will be launched in 2008 and be capable of detecting infrared radiation emitted by distant galactic dust. "The new instruments will allow us to detect dust associated with less dense regions of the interstellar medium," said Bianchi.

Astronomers also hope to learn more about the role played by dust in star formation. As Bianchi pointed out, there is a well established connection between the dust and the gas from which stars are formed. But the detailed relationship is unknown, and will require knowledge about the dust itself, in particular its molecular structure and lifecycle.

The ESF workshop focused mainly on spiral galaxies, because these are heavily obscured by dust. Galaxies are split into three categories by their structure, spiral, elliptical, and irregular. There is less dust in elliptical galaxies, while irregular galaxies are more difficult to model because they lack any orderly structure. "Spiral galaxies can be modelled in a more direct way because of their relatively simple geometry," said Bianchi. "However, recent comparison with observations of dust emission has shown that models may need a higher degree of complexity. This can be achieved now with the advances in computational facilities."

The ESF workshop was well timed to help Europe exploit the full potential of the data that will be obtained from the new instruments. It has already brought together the relevant European groups specialising in spiral galaxies and modelling dust, providing the platform for major advances in the field.

The workshop, held in Ghent, Belgium in May 2007, brought together 29 researchers from 10 different countries. Each year, ESF supports approximately 50 Exploratory Workshops across all scientific domains. These small, interactive group sessions are aimed at opening up new directions in research to explore new fields with a potential impact on developments in science.

Thomas Lau | alfa
Further information:
http://www.arcetri.astro.it/radtran
http://www.esf.org/activities/exploratory-workshops.html

More articles from Physics and Astronomy:

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

nachricht Large, distant comets more common than previously thought
26.07.2017 | University of Maryland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>