Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

£7.1m funding boost for gravitational wave research

04.10.2007
World renowned gravitational wave research at the University of Glasgow has been boosted by a significant 5 year, funding grant of £7.1M from the Science and Technology Facilities Council (STFC).

The Institute for Gravitational Research in the Department of Physics and Astronomy will use the grant to:

• continue its research into the detection of gravitational waves with the UK/German GEO 600 detector * and the US LIGO detectors**

• carry out further research in materials and interferometry*** relevant to an upgraded LIGO detector system, Advanced LIGO, and to a new third generation gravitational wave detector in Europe - the Einstein Gravitational Telescope (ET).

Professor Jim Hough, Director of the Institute for Gravitational Research said: “This is highly encouraging for the future of the gravitational wave field in the UK.”

Gravitational waves - waves in the curvature of space-time generated by the motion of massive objects, such as two stars or two black holes orbiting each other - are a prediction of General Relativity. The Institute for Gravitational Research is developing detectors and signal analysis methods to search for gravitational waves from astrophysical sources.

The detection and study of gravitational radiation is of great scientific importance. It should reveal new information about a variety of astrophysical systems including supernova explosions, black hole formation and pulsars. It is also possible that unexpected discoveries will be made through the research, in much the same way as has occurred in radio and x-ray astronomy.

In recent years there has been considerable progress towards the detection of these waves. Indirect confirmation of their existence has come from observations of the orbital motion of the binary pulsar PSR 1913+16, for which work Hulse and Taylor were awarded the 1993 Physics Nobel Prize. This evidence and the recognition of its importance gave a significant boost to the efforts of physicists worldwide in the gravitational wave field. The group in Glasgow has been involved in both experimental development and data analysis for around 35 years.

* Interferometry - is the technique of superposing two or more waves to detect differences between them.

** GEO 600 is a gravitational wave detector located in Hannover, Germany.

*** The US Laser Interferometer Gravitational-Wave Observatory (LIGO) operates two gravitational wave observatories in Livingston, Louisiana and at the LIGO Hanford Observatory, on the Hanford Nuclear Reservation near Richland, Washington.

Martin Shannon | alfa
Further information:
http://www.gla.ac.uk

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>