Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum Device Traps, Detects and Manipulates the Spin of Single Electrons

01.10.2007
A novel device, developed by a team led by University at Buffalo engineers, simply and conveniently traps, detects and manipulates the single spin of an electron, overcoming some major obstacles that have prevented progress toward spintronics and spin-based quantum computing.

Published online this week in Physical Review Letters, the research paper brings closer to reality electronic devices based on the use of single spins and their promise of low-power/high-performance computing.

"The task of manipulating the spin of single electrons is a hugely daunting technological challenge that has the potential, if overcome, to open up new paradigms of nanoelectronics," said Jonathan P. Bird, Ph.D., professor of electrical engineering in the UB School of Engineering and Applied Sciences and principal investigator on the project. "In this paper, we demonstrate a novel approach that allows us to easily trap, manipulate and detect single-electron spins, in a scheme that has the potential to be scaled up in the future into dense, integrated circuits."

While several groups have recently reported the trapping of a single spin, they all have done so using quantum dots, nanoscale semiconductors that can only demonstrate spin trapping in extremely cold temperatures, below 1 degree Kelvin.

The cooling of devices or computers to that temperature is not routinely achievable, Bird said, and it makes systems far more sensitive to interference.

The UB group, by contrast, has trapped and detected spin at temperatures of about 20 degrees Kelvin, a level that Bird says should allow for the development of a viable technology, based on this approach.

In addition, the system they developed requires relatively few logic gates, the components in semiconductors that control electron flow, making scalability to complex integrated circuits very feasible.

The UB researchers achieved success through their innovative use of quantum point contacts: narrow, nanoscale constrictions that control the flow of electrical charge between two conducting regions of a semiconductor.

"It was recently predicted that it should be possible to use these constrictions to trap single spins," said Bird. "In this paper, we provide evidence that such trapping can, indeed, be achieved with quantum point contacts and that it may also be manipulated electrically."

The system they developed steers the electrical current in a semiconductor by selectively applying voltage to metallic gates that are fabricated on its surface.

These gates have a nanoscale gap between them, Bird explained, and it is in this gap where the quantum point contact forms when voltage is applied to them.

By varying the voltage applied to the gates, the width of this constriction can be squeezed continuously, until it eventually closes completely, he said.

"As we increase the charge on the gates, this begins to close that gap," explained Bird, "allowing fewer and fewer electrons to pass through until eventually they all stop going through. As we squeeze off the channel, just before the gap closes completely, we can detect the trapping of the last electron in the channel and its spin."

The trapping of spin in that instant is detected as a change in the electrical current flowing through the other half of the device, he explained.

"One region of the device is sensitive to what happens in the other region," he said.

Now that the UB researchers have trapped and detected single spin, the next step is to work on trapping and detecting two or more spins that can communicate with each other, a prerequisite for spintronics and quantum computing.

Co-authors on the paper are Youngsoo Yoon, Ph.D., a UB doctoral student in electrical engineering; L. Mourokh of Queens College and the College of Staten Island of the City University of New York; T. Morimoto, N. Aoki and Y. Ochiai of Chiba University in Japan; and J. L. Reno of Sandia National Laboratories.

The research was funded by the U.S. Department of Energy. Bird, who also has received funding from the UB Office of the Vice President for Research, was recruited to UB with a faculty recruitment grant from the New York State Office of Science, Technology and Academic Outreach (NYSTAR).

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>