Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Imaging quantum entanglement

An international team including scientists from the London Centre for Nanotechnology (LCN) today publishes findings in the journal ‘Proceedings of the National Academy of Sciences’ (PNAS) demonstrating the dramatic effects of quantum mechanics in a simple magnet.

The importance of the work lies in establishing how a conventional tool of material science – neutron beams produced at particle accelerators and nuclear reactors – can be used to produce images of the ghostly entangled states of the quantum world.

At the nano scale, magnetism arises from atoms behaving like little magnets called ‘spins’. In ferromagnets – the kind that stick to fridge doors – all of these atomic magnets point in the same direction. In antiferromagnets, the spins were thought to spontaneously align themselves opposite to the adjacent spins, leaving the material magnetically neutral overall. The new research shows that this picture is not correct because it ignores the uncertainties of quantum mechanics. In particular, at odds with everyday intuition, the quantum-mechanical physical laws which operate on the nano-scale allow a spin to simultaneously point both up and down. At the same time, two spins can be linked such that even though it is impossible to know the direction of either by itself, they will always point in opposite directions – in which case they are ‘entangled’.

With their discovery, the researchers demonstrate that neutrons can detect entanglement, the key resource for quantum computing.

One of the lead authors of the work, Professor Des McMorrow from the LCN, comments: “When we embarked on this work, I think it is fair to say that none of us were expecting to see such gigantic effects produced by quantum entanglement in the material we were studying. We were following a hunch that this material might yield something important and we had the good sense to pursue it.”

The researchers’ next steps will be to pursue the implications for high temperature superconductors, materials carrying electrical currents with no heating and which bear remarkable similarities to the insulating antiferromagnets they have studied, and the design of quantum computers.

David Weston | alfa
Further information:

More articles from Physics and Astronomy:

nachricht A new kind of quantum bits in two dimensions
19.03.2018 | Vienna University of Technology

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>