Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quark star glimmers

11.04.2002


Space telescope may have spotted strange matter.
© NASA/Chandra


Astronomers may have discovered a strange new form of matter.

Astronomers think they might have spotted a quark star, a mass of fundamental particles only a few kilometres across but weighing more than our Sun. If the star’s nature is confirmed, it would be the first example of this state of matter.

Theoreticians hypothesized the existence of quark stars in the 1980s. Today, NASA announced the discovery of such a star, based on results from their space telescope the Chandra X-ray Observatory. The star, called RX J1856, is about 360 light years from Earth.



RX J1856 was previously thought to be a neutron star - these are formed when a large star explodes and collapses in on itself. Gravitational attraction between particles in an atom overcomes the electrical repulsion keeping them apart, fusing protons and electrons to form neutrons, which pack together at unimaginable density. A teaspoonful of neutron star would weigh a billion tons.

But Chandra’s measurements suggest that, at just over 11 kilometres across, RX J1856 is too small to be a neutron star, if current models are correct.

Instead, neutrons and protons in the star may themselves have dissolved into an even denser mass of their constituent quarks, suggests Jeremy Drake of the Harvard-Smithsonian Centre for Astrophysics in Cambridge, Massachusetts, and his colleagues1. This is known as strange matter, in which the packaging of three constituent quarks in a proton or neutron breaks down.

"Strange matter could be fairly common in the Universe," says Drake. It should be stable, and might grow like a crystal from the neutrons and protons it encounters. It’s possible, he adds, that all neutron stars are in fact quark stars. Drake declares himself "unbiased" about the star’s true identity.

But astronomer Frederick Walter of the State University of New York, Stony Brook, argues that the announcement is premature. Our ignorance of the star’s temperature and chemical composition make its diameter uncertain, he says.

"If it’s a quark star it’s spectacular, but there’s absolutely no evidence for that," Walter says. There is an alternative explanation: that variation in the star’s temperature makes it hard to estimate its diameter. The probability of this is less than 10%, as it would require the hottest part of the star to be pointing straight at Earth.

"These results are not definitive," agrees Michael Turner, an astrophysicist at the University of Chicago. Studies of other bodies are needed to confirm whether quark stars really exist, he says.

Chandra’s observations do show how the extreme regions of space can be used to test physical theories, adds Turner. "We can use the Universe as a heavenly laboratory."

References

  1. Drake, J. J. et al. Is RX J185635-375 a Quark Star?. Preprint, (2002).


JOHN WHITFIELD | © Nature News Service

More articles from Physics and Astronomy:

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>