Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quark star glimmers

11.04.2002


Space telescope may have spotted strange matter.
© NASA/Chandra


Astronomers may have discovered a strange new form of matter.

Astronomers think they might have spotted a quark star, a mass of fundamental particles only a few kilometres across but weighing more than our Sun. If the star’s nature is confirmed, it would be the first example of this state of matter.

Theoreticians hypothesized the existence of quark stars in the 1980s. Today, NASA announced the discovery of such a star, based on results from their space telescope the Chandra X-ray Observatory. The star, called RX J1856, is about 360 light years from Earth.



RX J1856 was previously thought to be a neutron star - these are formed when a large star explodes and collapses in on itself. Gravitational attraction between particles in an atom overcomes the electrical repulsion keeping them apart, fusing protons and electrons to form neutrons, which pack together at unimaginable density. A teaspoonful of neutron star would weigh a billion tons.

But Chandra’s measurements suggest that, at just over 11 kilometres across, RX J1856 is too small to be a neutron star, if current models are correct.

Instead, neutrons and protons in the star may themselves have dissolved into an even denser mass of their constituent quarks, suggests Jeremy Drake of the Harvard-Smithsonian Centre for Astrophysics in Cambridge, Massachusetts, and his colleagues1. This is known as strange matter, in which the packaging of three constituent quarks in a proton or neutron breaks down.

"Strange matter could be fairly common in the Universe," says Drake. It should be stable, and might grow like a crystal from the neutrons and protons it encounters. It’s possible, he adds, that all neutron stars are in fact quark stars. Drake declares himself "unbiased" about the star’s true identity.

But astronomer Frederick Walter of the State University of New York, Stony Brook, argues that the announcement is premature. Our ignorance of the star’s temperature and chemical composition make its diameter uncertain, he says.

"If it’s a quark star it’s spectacular, but there’s absolutely no evidence for that," Walter says. There is an alternative explanation: that variation in the star’s temperature makes it hard to estimate its diameter. The probability of this is less than 10%, as it would require the hottest part of the star to be pointing straight at Earth.

"These results are not definitive," agrees Michael Turner, an astrophysicist at the University of Chicago. Studies of other bodies are needed to confirm whether quark stars really exist, he says.

Chandra’s observations do show how the extreme regions of space can be used to test physical theories, adds Turner. "We can use the Universe as a heavenly laboratory."

References

  1. Drake, J. J. et al. Is RX J185635-375 a Quark Star?. Preprint, (2002).


JOHN WHITFIELD | © Nature News Service

More articles from Physics and Astronomy:

nachricht Subnano lead particles show peculiar decay behavior
25.04.2018 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Getting electrons to move in a semiconductor
25.04.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>