Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quark star glimmers

11.04.2002


Space telescope may have spotted strange matter.
© NASA/Chandra


Astronomers may have discovered a strange new form of matter.

Astronomers think they might have spotted a quark star, a mass of fundamental particles only a few kilometres across but weighing more than our Sun. If the star’s nature is confirmed, it would be the first example of this state of matter.

Theoreticians hypothesized the existence of quark stars in the 1980s. Today, NASA announced the discovery of such a star, based on results from their space telescope the Chandra X-ray Observatory. The star, called RX J1856, is about 360 light years from Earth.



RX J1856 was previously thought to be a neutron star - these are formed when a large star explodes and collapses in on itself. Gravitational attraction between particles in an atom overcomes the electrical repulsion keeping them apart, fusing protons and electrons to form neutrons, which pack together at unimaginable density. A teaspoonful of neutron star would weigh a billion tons.

But Chandra’s measurements suggest that, at just over 11 kilometres across, RX J1856 is too small to be a neutron star, if current models are correct.

Instead, neutrons and protons in the star may themselves have dissolved into an even denser mass of their constituent quarks, suggests Jeremy Drake of the Harvard-Smithsonian Centre for Astrophysics in Cambridge, Massachusetts, and his colleagues1. This is known as strange matter, in which the packaging of three constituent quarks in a proton or neutron breaks down.

"Strange matter could be fairly common in the Universe," says Drake. It should be stable, and might grow like a crystal from the neutrons and protons it encounters. It’s possible, he adds, that all neutron stars are in fact quark stars. Drake declares himself "unbiased" about the star’s true identity.

But astronomer Frederick Walter of the State University of New York, Stony Brook, argues that the announcement is premature. Our ignorance of the star’s temperature and chemical composition make its diameter uncertain, he says.

"If it’s a quark star it’s spectacular, but there’s absolutely no evidence for that," Walter says. There is an alternative explanation: that variation in the star’s temperature makes it hard to estimate its diameter. The probability of this is less than 10%, as it would require the hottest part of the star to be pointing straight at Earth.

"These results are not definitive," agrees Michael Turner, an astrophysicist at the University of Chicago. Studies of other bodies are needed to confirm whether quark stars really exist, he says.

Chandra’s observations do show how the extreme regions of space can be used to test physical theories, adds Turner. "We can use the Universe as a heavenly laboratory."

References

  1. Drake, J. J. et al. Is RX J185635-375 a Quark Star?. Preprint, (2002).


JOHN WHITFIELD | © Nature News Service

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>