Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neutrino weighed up

11.04.2002


Astronomers use galaxies to reckon a subatomic particle’s mass.


Astronomers surveyed regions outside our Galaxy to estimate neutrino’s mass.
© R. Smith


The spread of galaxies reveals the smoothing effect of invisible neutrinos.



By mapping hundreds of thousands of galaxies, astronomers have estimated the mass of the neutrino. They have also calculated the contribution that this mysterious subatomic particle makes to the total mass of the Universe.

The neutrino weighs no more than one-billionth of the mass of a hydrogen atom, Ofer Lahav of the University of Cambridge told the annual UK National Astronomy Meeting in Bristol today. Yet despite being so small, neutrinos could account for a maximum of about 20% of the mass of the entire Universe.


Lahav and his colleagues deduced the influence of neutrinos by comparing a three-dimensional map of the Universe with the predictions of theoretical physics. "We can use a huge chunk of the Universe to constrain the mass of a tiny particle," says Lahav.

Small but influential

Neutrinos are unimaginably tiny, carry no electrical charge and can pass through planets unperturbed. But their abundance makes them potentially major players in the Universe.

For a long time it was thought that neutrinos had no mass at all. Recent astronomical observations have suggested that they do, but working out the exact figure "is probably one of the hardest questions [in physics]", says theoretical physicist Stephen King of the University of Southampton, UK.

The new estimate "sounds like a reasonable number", King adds. It broadly agrees with, although does not confirm, other figures produced from studies of radioactive decay earlier this year.

One-billionth of a hydrogen atom is towards the lower end of current estimates. If this value stands up, it shows that neutrinos do not exert enough gravitational tug to have much influence over the evolution of the visible Universe, says King. "It’s saying that neutrinos can’t play an important part in galaxy formation."

Revealing wrinkles

Lahav and his colleagues’ conclusion is based on gauging the lumpiness of the Universe. Tiny wrinkles in the Big Bang led to matter forming into gigantic clumps - galaxies, and clusters of galaxies - as the Universe aged.

Yet only about 5% the Universe’s mass is in a visible form. The rest is in a variety of substances known as dark matter, of which neutrinos are one component.

Dark matter is betrayed by its influence on what we can see. Neutrinos, which whizz through space at close to the speed of light, smooth the Universe out by redistributing mass. The heavier neutrinos are, the less clumping we should see in today’s Universe.

Lahav’s team used a three-dimensional map of 160,000 galaxies that they constructed as part of an Anglo-Australian team. They worked out the mass of the neutrino that best fitted the spread of galaxies they saw.

JOHN WHITFIELD | © Nature News Service

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>