Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neutrino weighed up

11.04.2002


Astronomers use galaxies to reckon a subatomic particle’s mass.


Astronomers surveyed regions outside our Galaxy to estimate neutrino’s mass.
© R. Smith


The spread of galaxies reveals the smoothing effect of invisible neutrinos.



By mapping hundreds of thousands of galaxies, astronomers have estimated the mass of the neutrino. They have also calculated the contribution that this mysterious subatomic particle makes to the total mass of the Universe.

The neutrino weighs no more than one-billionth of the mass of a hydrogen atom, Ofer Lahav of the University of Cambridge told the annual UK National Astronomy Meeting in Bristol today. Yet despite being so small, neutrinos could account for a maximum of about 20% of the mass of the entire Universe.


Lahav and his colleagues deduced the influence of neutrinos by comparing a three-dimensional map of the Universe with the predictions of theoretical physics. "We can use a huge chunk of the Universe to constrain the mass of a tiny particle," says Lahav.

Small but influential

Neutrinos are unimaginably tiny, carry no electrical charge and can pass through planets unperturbed. But their abundance makes them potentially major players in the Universe.

For a long time it was thought that neutrinos had no mass at all. Recent astronomical observations have suggested that they do, but working out the exact figure "is probably one of the hardest questions [in physics]", says theoretical physicist Stephen King of the University of Southampton, UK.

The new estimate "sounds like a reasonable number", King adds. It broadly agrees with, although does not confirm, other figures produced from studies of radioactive decay earlier this year.

One-billionth of a hydrogen atom is towards the lower end of current estimates. If this value stands up, it shows that neutrinos do not exert enough gravitational tug to have much influence over the evolution of the visible Universe, says King. "It’s saying that neutrinos can’t play an important part in galaxy formation."

Revealing wrinkles

Lahav and his colleagues’ conclusion is based on gauging the lumpiness of the Universe. Tiny wrinkles in the Big Bang led to matter forming into gigantic clumps - galaxies, and clusters of galaxies - as the Universe aged.

Yet only about 5% the Universe’s mass is in a visible form. The rest is in a variety of substances known as dark matter, of which neutrinos are one component.

Dark matter is betrayed by its influence on what we can see. Neutrinos, which whizz through space at close to the speed of light, smooth the Universe out by redistributing mass. The heavier neutrinos are, the less clumping we should see in today’s Universe.

Lahav’s team used a three-dimensional map of 160,000 galaxies that they constructed as part of an Anglo-Australian team. They worked out the mass of the neutrino that best fitted the spread of galaxies they saw.

JOHN WHITFIELD | © Nature News Service

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>