Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neutrino weighed up

11.04.2002


Astronomers use galaxies to reckon a subatomic particle’s mass.


Astronomers surveyed regions outside our Galaxy to estimate neutrino’s mass.
© R. Smith


The spread of galaxies reveals the smoothing effect of invisible neutrinos.



By mapping hundreds of thousands of galaxies, astronomers have estimated the mass of the neutrino. They have also calculated the contribution that this mysterious subatomic particle makes to the total mass of the Universe.

The neutrino weighs no more than one-billionth of the mass of a hydrogen atom, Ofer Lahav of the University of Cambridge told the annual UK National Astronomy Meeting in Bristol today. Yet despite being so small, neutrinos could account for a maximum of about 20% of the mass of the entire Universe.


Lahav and his colleagues deduced the influence of neutrinos by comparing a three-dimensional map of the Universe with the predictions of theoretical physics. "We can use a huge chunk of the Universe to constrain the mass of a tiny particle," says Lahav.

Small but influential

Neutrinos are unimaginably tiny, carry no electrical charge and can pass through planets unperturbed. But their abundance makes them potentially major players in the Universe.

For a long time it was thought that neutrinos had no mass at all. Recent astronomical observations have suggested that they do, but working out the exact figure "is probably one of the hardest questions [in physics]", says theoretical physicist Stephen King of the University of Southampton, UK.

The new estimate "sounds like a reasonable number", King adds. It broadly agrees with, although does not confirm, other figures produced from studies of radioactive decay earlier this year.

One-billionth of a hydrogen atom is towards the lower end of current estimates. If this value stands up, it shows that neutrinos do not exert enough gravitational tug to have much influence over the evolution of the visible Universe, says King. "It’s saying that neutrinos can’t play an important part in galaxy formation."

Revealing wrinkles

Lahav and his colleagues’ conclusion is based on gauging the lumpiness of the Universe. Tiny wrinkles in the Big Bang led to matter forming into gigantic clumps - galaxies, and clusters of galaxies - as the Universe aged.

Yet only about 5% the Universe’s mass is in a visible form. The rest is in a variety of substances known as dark matter, of which neutrinos are one component.

Dark matter is betrayed by its influence on what we can see. Neutrinos, which whizz through space at close to the speed of light, smooth the Universe out by redistributing mass. The heavier neutrinos are, the less clumping we should see in today’s Universe.

Lahav’s team used a three-dimensional map of 160,000 galaxies that they constructed as part of an Anglo-Australian team. They worked out the mass of the neutrino that best fitted the spread of galaxies they saw.

JOHN WHITFIELD | © Nature News Service

More articles from Physics and Astronomy:

nachricht First direct observation and measurement of ultra-fast moving vortices in superconductors
20.07.2017 | The Hebrew University of Jerusalem

nachricht Manipulating Electron Spins Without Loss of Information
19.07.2017 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>