Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA Astronomers pinpoint origin of nature's most powerful magnetic bursts

21.09.2007
University of Arizona astronomers have pinpointed the origin of powerful bursts from nature's most magnetic objects.

The bursts are from "magnetars," some of the most enigmatic objects in the universe.

Magnetars are a type of neutron star, which are superdense stars that pack the mass of a sun into a body the size of Manhattan Island. Tiny magnetars possess magnetic fields that are at least 100 trillion times as powerful as Earth's magnetic field. They occasionally produce powerful bursts, hurling high-energy radiation cascading across space. The origin of these energetic eruptions and the strong magnetic fields is a mystery.

Astronomers discovered a magnetar with NASA's X-Ray Timing Explorer in July 2003, when it brightened by about 100 times its usual faint luminosity. They continued monitoring it regularly with the European Photon Imaging Camera, known as EPIC, on the European Space Agency's XMM-Newton Observatory until March 2006, when the object faded to its pre-outburst brightness.

As the magnetar faded, EPIC recorded changes in the energies of the X-rays released.

Tolga Guver, who is a visiting graduate student at the UA, working with Assistant Professor Feryal Ozel of the UA physics and UA astronomy departments, compared the magnetar's changing X-ray spectrum with predictions from a computer model. They developed the model to describe the physical properties of a magnetar's surface and magnetic field in detail.

Guver, Ozel and their collaborators found that the data was best fitted with a model that traced the outburst to just below the surface of the magnetar and confined it to an area about 3.5 kilometers (about two miles) across.

"This is the first time both the surface emission and its subsequent reprocessing in the magnetosphere have been incorporated into the same computer model," Ozel said.

"This is a breakthrough because we can now distinguish between surface and magnetospheric phenomena,'' Guver said.

Determining both the size and the location of the powerful burst is like "performing anatomy on a distant, tiny star,'' Ozel added.

Their model also allowed Guver, Ozel and their colleagues to determine spectroscopically the strength of this object's magnetic field. The magnetar's magnetic field is around 600 trillion times stronger than the Earth's magnetic field.

The scientists say they are encouraged because the measurement is similar to an earlier estimate made based on how fast the source is "spinning down,"

which is the change in the spin period over time. They said it boosts their confidence that their model is correct.

"It is tremendously exciting to be able to compute exotic quantum phenomena that appear only in these ultrastrong magnetic fields and to see these predictions appear in actual data,'' Ozel added.

The astronomers say that they don't yet understand the mechanism of the outburst, which is probably somehow magnetically triggered.

The researchers say they plan to use their computer model to study more magnetars, using more data from X-ray observatories, in the quest for answers.

They are publishing their results in today's edition (Sept. 20, 2007) of the Astrophysical Journal Letters. The paper's authors are Guver, Ozel, Ersin Gogus of Sabanci University, Istanbul, Turkey, and Chryssa Kouveliotou of the NASA Marshall Space Flight Center, Huntsville, Ala.

CONTACTS: Feryal Ozel (520-626-1622; fozel@physics.arizona.edu
Tolga Guver (tolga@physics.arizona.edu)

Lori Stiles | University of Arizona
Further information:
http://www.physics.arizona.edu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>