Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UA Astronomers pinpoint origin of nature's most powerful magnetic bursts

University of Arizona astronomers have pinpointed the origin of powerful bursts from nature's most magnetic objects.

The bursts are from "magnetars," some of the most enigmatic objects in the universe.

Magnetars are a type of neutron star, which are superdense stars that pack the mass of a sun into a body the size of Manhattan Island. Tiny magnetars possess magnetic fields that are at least 100 trillion times as powerful as Earth's magnetic field. They occasionally produce powerful bursts, hurling high-energy radiation cascading across space. The origin of these energetic eruptions and the strong magnetic fields is a mystery.

Astronomers discovered a magnetar with NASA's X-Ray Timing Explorer in July 2003, when it brightened by about 100 times its usual faint luminosity. They continued monitoring it regularly with the European Photon Imaging Camera, known as EPIC, on the European Space Agency's XMM-Newton Observatory until March 2006, when the object faded to its pre-outburst brightness.

As the magnetar faded, EPIC recorded changes in the energies of the X-rays released.

Tolga Guver, who is a visiting graduate student at the UA, working with Assistant Professor Feryal Ozel of the UA physics and UA astronomy departments, compared the magnetar's changing X-ray spectrum with predictions from a computer model. They developed the model to describe the physical properties of a magnetar's surface and magnetic field in detail.

Guver, Ozel and their collaborators found that the data was best fitted with a model that traced the outburst to just below the surface of the magnetar and confined it to an area about 3.5 kilometers (about two miles) across.

"This is the first time both the surface emission and its subsequent reprocessing in the magnetosphere have been incorporated into the same computer model," Ozel said.

"This is a breakthrough because we can now distinguish between surface and magnetospheric phenomena,'' Guver said.

Determining both the size and the location of the powerful burst is like "performing anatomy on a distant, tiny star,'' Ozel added.

Their model also allowed Guver, Ozel and their colleagues to determine spectroscopically the strength of this object's magnetic field. The magnetar's magnetic field is around 600 trillion times stronger than the Earth's magnetic field.

The scientists say they are encouraged because the measurement is similar to an earlier estimate made based on how fast the source is "spinning down,"

which is the change in the spin period over time. They said it boosts their confidence that their model is correct.

"It is tremendously exciting to be able to compute exotic quantum phenomena that appear only in these ultrastrong magnetic fields and to see these predictions appear in actual data,'' Ozel added.

The astronomers say that they don't yet understand the mechanism of the outburst, which is probably somehow magnetically triggered.

The researchers say they plan to use their computer model to study more magnetars, using more data from X-ray observatories, in the quest for answers.

They are publishing their results in today's edition (Sept. 20, 2007) of the Astrophysical Journal Letters. The paper's authors are Guver, Ozel, Ersin Gogus of Sabanci University, Istanbul, Turkey, and Chryssa Kouveliotou of the NASA Marshall Space Flight Center, Huntsville, Ala.

CONTACTS: Feryal Ozel (520-626-1622;
Tolga Guver (

Lori Stiles | University of Arizona
Further information:

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>