Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SMART-1: Europe on the Moon, one year on

03.09.2007
A year ago, as Europe reached the Moon for the first time, scientists on Earth eagerly watched SMART-1’s spectacular impact. New results from the impact analysis and from the instruments still keep coming.

One year on, we present ongoing scientific highlights of the mission. The analysis of data and simulations of the satellite’s impact provide clues on the dynamics of the ejecta after the flash, along with laboratory experiments or modelling of impacts. The experience gained is being put to good use in preparation for future missions.

SMART-1 addresses various scientific themes that answer questions on the physical processes at work on Earth-like planets and how they evolve. The moon is a laboratory for geophysics where impacts, volcanism, tectonics and effects of space weather can be studied to put together the story of its past. The geochemistry and origins of the Moon, the evolution of the Earth-Moon system and the bombardment of the inner solar system are topics addressed under lunar formation and evolution.

Know-how from SMART-1 is helping prepare the ground for future science and exploration missions. With its unrivalled resolution, in colour and with various illumination angles, the satellite has mapped the polar regions, surveyed lunar resources and investigated potential landing sites and outposts.

More than 15 presentations were given by the SMART-1 team during the ‘Europlanet’ European Planetary Science Congress in Berlin, 20-24 August 2007. Topics covered included: highlights of SMART-1 lunar science, new results on coupling between impacts and lunar volcanism for Humorum and Procellarum basins, latest high resolution maps of the lunar Poles and infrared spectra of lunar areas and craters.

Mike Burchell from the University of Kent showed laboratory simulations describing the impact crater’s shape and size, predicting ricochet ejecta. As a detailed picture of the impact is taking shape, scientists now know that the spacecraft bounced over the surface, projecting debris at high altitude, which was traced by Christian Veillet with the Canada France Hawaii telescope.

Experts from the SMART-1 team are now working on data calibration, analysis, archival and distribution for the scientific community and are supporting collaborations with upcoming lunar missions. This includes refining the lunar coordinate systems, selecting targets observed by SMART-1 and other probes, exchanging tools for scientific planning, or building on SMART-1 outreach or education activities to promote future lunar missions and exploration.

“Know-how and data from SMART-1 is forming a bridge for international collaboration and European contribution to upcoming lunar Missions”, says SMART-1 Project scientist Bernard Foing.

Chang'E-1, China’s lunar orbiter and JAXA’s Selene are ready to be launched later this year. In Spring 2008, the Indian Chandrayaan-1 will carry three ESA instruments (two of them upgraded SMART-1 X-ray and infrared instruments) to observe the moon.

Knowledge gained from SMART-1 and the impact campaign is also helping the preparation of NASA’s Lunar Reconnaissance Orbiter and the Lunar Crater Observation and Sensing Satellite, due for launch before the end of 2008. SMART-1’s high resolution maps are helping characterise future landing sites, in particular at the poles.

“After SMART-1’s final touchdown at 2 km/s,” says Bernard Foing, “everybody asks: when will Europe land softly on the Moon?”

In the context of ESA’s Aurora Exploration programme and its preparatory activities for a Mars Sample Return mission, a call of ideas was issued for the Next Exploration Science and Technology mission (NEXT) in April 2007. It resulted in more than 70 responses, including more than 30 lunar proposals. Future European lunar missions concern a large community interested in the scientific and technological potential of lunar landers and sample return missions.

Bernard Foing | alfa
Further information:
http://www.esa.int/SPECIALS/SMART-1/SEMWH5MPQ5F_0.html

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>