Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers develop method for mass production of nanogap electrodes

Researchers at the University of Pennsylvania have developed a reliable, reproducible method for parallel fabrication of multiple nanogap electrodes, a development crucial to the creation of mass-produced nanoscale electronics.

Charlie Johnson, associate professor in the Department of Physics and Astronomy and the Department of Materials Science and Engineering at Penn, and colleagues created the self-balancing single-step technique using feedback controlled electromigration, or FCE. By using a novel arrangement of nanoscale shorts they showed that a balanced self-correcting process occurs that enables the simultaneous electromigration of sub-5 nm sized nanogaps. The nanogaps are controllably formed by carefully applying an electric current which pushes the atoms of the metallic wire through the process of electromigration.

In the study, the researchers described the simultaneous self-balancing of as many as 16 nanogaps using thin sheets of gold and FCE methodology originally developed at Penn. Using electron-beam lithography, Penn researchers constructed arrays of thin gold leads connected by narrow constrictions that were less than 100 nm in width. Introducing a voltage forced electrons to flow through these narrow constrictions in the gold, meeting with greater resistance as each constriction narrowed in response to electromigration. The narrower the constriction, the more the electrons were forced to the other, wider constrictions, in order to take a path of least resistance. This balanced interplay ensured that the electromigration process occurred simultaneously between the constrictions. After a few minutes, the applied electrons narrowed the constrictions until they opened to form gaps of roughly one nanometer in size with atomic-scale uniformity. By monitoring the electric-current feedback, researchers could adjust the size of the nanogaps as well.

Nanotechnology shows promise for revolutionizing materials and electronics by reducing the size and increasing the functionality of new composite materials; however, creating these materials is time consuming and costly, and it requires precise control at the atomic level, a scale that is difficult or impossible to achieve with current technology.

During the last several years there has been progress towards developing single nanometer-sized gaps and nanodevices. Yet their extremely low reproducibility has hindered any real chance of their use on the industrial scale, which is crucial to the development of the complex circuits that would be required to build, for example, a computer out of nanoelectronics.

“Reproducibility is one of the major issues facing nanotechnology, and it’s required us to depart from the standard ways of achieving this in micro-electronics processing.” Said Douglas Strachan of the Department of Materials Science and Engineering and the Department of Physics and Astronomy at Penn. “When you first hear of opening up a wire with a current, you usually think of a fuse. To think that this sort of technique could actually lead to atomically-precise nanoelectronics is sort of mind blowing.”

Danvers Johnston of the Department of Physics and Astronomy said, “Since it is impossible to mold nanoscale-size objects with any other lab tools, we direct the electrons to get them to do the work for us.”

Jordan Reese | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

More VideoLinks >>>