Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers develop method for mass production of nanogap electrodes

Researchers at the University of Pennsylvania have developed a reliable, reproducible method for parallel fabrication of multiple nanogap electrodes, a development crucial to the creation of mass-produced nanoscale electronics.

Charlie Johnson, associate professor in the Department of Physics and Astronomy and the Department of Materials Science and Engineering at Penn, and colleagues created the self-balancing single-step technique using feedback controlled electromigration, or FCE. By using a novel arrangement of nanoscale shorts they showed that a balanced self-correcting process occurs that enables the simultaneous electromigration of sub-5 nm sized nanogaps. The nanogaps are controllably formed by carefully applying an electric current which pushes the atoms of the metallic wire through the process of electromigration.

In the study, the researchers described the simultaneous self-balancing of as many as 16 nanogaps using thin sheets of gold and FCE methodology originally developed at Penn. Using electron-beam lithography, Penn researchers constructed arrays of thin gold leads connected by narrow constrictions that were less than 100 nm in width. Introducing a voltage forced electrons to flow through these narrow constrictions in the gold, meeting with greater resistance as each constriction narrowed in response to electromigration. The narrower the constriction, the more the electrons were forced to the other, wider constrictions, in order to take a path of least resistance. This balanced interplay ensured that the electromigration process occurred simultaneously between the constrictions. After a few minutes, the applied electrons narrowed the constrictions until they opened to form gaps of roughly one nanometer in size with atomic-scale uniformity. By monitoring the electric-current feedback, researchers could adjust the size of the nanogaps as well.

Nanotechnology shows promise for revolutionizing materials and electronics by reducing the size and increasing the functionality of new composite materials; however, creating these materials is time consuming and costly, and it requires precise control at the atomic level, a scale that is difficult or impossible to achieve with current technology.

During the last several years there has been progress towards developing single nanometer-sized gaps and nanodevices. Yet their extremely low reproducibility has hindered any real chance of their use on the industrial scale, which is crucial to the development of the complex circuits that would be required to build, for example, a computer out of nanoelectronics.

“Reproducibility is one of the major issues facing nanotechnology, and it’s required us to depart from the standard ways of achieving this in micro-electronics processing.” Said Douglas Strachan of the Department of Materials Science and Engineering and the Department of Physics and Astronomy at Penn. “When you first hear of opening up a wire with a current, you usually think of a fuse. To think that this sort of technique could actually lead to atomically-precise nanoelectronics is sort of mind blowing.”

Danvers Johnston of the Department of Physics and Astronomy said, “Since it is impossible to mold nanoscale-size objects with any other lab tools, we direct the electrons to get them to do the work for us.”

Jordan Reese | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht A new kind of quantum bits in two dimensions
19.03.2018 | Vienna University of Technology

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>