Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new project to test a pioneering method to advance technology

28.03.2002


Technological advances take place all the time – driven by need. But can these advances be speeded up in quantum leaps? The European Space Agency thinks they can, and is launching a pioneering project to test this.



The European Space Agency has launched a project to test whether technological advances can be speeded up in quantum leaps. The Star Tiger project will gather together a small team of enthusiastic scientists and engineers with a range of expertise from around Europe, put them together for four months at a location with state-of-the-art facilities, remove distractions and administrative burdens, and give them a technically challenging project.

"With Star Tiger we want to reduce dramatically the turn-around time for state-of-the art technology developments," says Niels Jensen, ESA`s Head of Technology Programme Department. "A small group of researcher and experts will be given the possibility to concentrate just on their R&D. They will be able to try-out new ideas on the spot, select or eliminate new paths as soon as identified and make prototypes on the fly. By creating a highly motivated team of researchers and experts and let them work together in the same labs with all needed for an intense period we will get an extra synergy not known in the conventional world of R&D, and a prospective of a key scientific breakthrough in a strategically important technological area."


The Star Tiger team will be recruited from across Europe and members will have the opportunity to work in a small group of like-minded scientists and engineers, and endeavour to produce a terahertz imager operating in two frequencies, 250 GHz and 300 GHz. The team has been given the specific task of imaging a human hand in more or less real time. The use of two frequencies provides a means for contrasting between materials with different transmission and reflection properties of skin and tissue, effectively creating two colours.

“Forget Big Brother and Castaway, where people were thrown together with no goal other than to entertain the public through TV programmes. In this project we’ll be handpicking people for their expertise and ability to work in a team – to work together to push technology to its limit”, explained Dr Chris Mann, the project manager at CLRC Rutherford Appleton Laboratory in Oxfordshire, UK, where the team will be located.

The imager will provide a view port into presently hidden information embedded in the natural terahertz radio waves emitted by pretty much everything, including people. Space applications presently include astronomy, atmospheric physics, and Earth and environment monitoring. With the use of MEMS (MicroElectroMechanical Systems) and Photonic Band Gap technology the Star Tiger imager will be low powered, small and compact and opening up the possibility of planetary and micro satellite missions.

“We’re asking the team to produce a low cost, mass and volume colour terahertz imaging system, which would be made using a combination of micro machining and lithography-based manufacturing techniques”, explained Peter de Maagt, the project manager at ESA. “The over-riding limiting factors for present imagers are their complexity, combined with their size, mass and cost. Star Tiger’s requirement of colour imaging makes this challenge truly demanding”.

Non-space activities will also benefit from this technology, including industrial process control and medical diagnostics – terahertz radio waves are able to penetrate the uppermost layers of skin making the early detection of skin cancers an exciting and real possibility. Security surveillance is another area that may benefit. By observing terahertz radio waves it is possible to see through many materials such as clothing, and obtain the equivalent of an X-ray image without the use of X-rays. To this end Star Tiger have sought support from Dr Roger Appleby of Qinetiq who heads the team currently developing a real time millimetre wave imager.

“Qinetiq obtained the first video-rate millimetre wave images which they unveiled at a recent conference. Their images inspired me to bring this technology into the terahertz range where theoretically higher resolution and smaller systems can be achieved. The technical tasks, however, are daunting. Star Tiger was the only way in which Peter and I could see it happening soon”, commented Chris Mann. “In order for Star Tiger to succeed it will need to demonstrate that a small focused team can bring about dramatic technical advances in a short period”. To provide the maximum chance of success they have at their disposal the full support and resources of RAL’s Space Science and Technology Department, the Central Microstructure Facility and the Millimetre Wave Technology Group.

"The Star Tiger project promises to be extremely exciting - and everyone in my department at RAL will be watching it with great interest. As well as being the largest space science department in Europe, we have some of the most highly regarded scientists and engineers, and many of them will be providing support and help to the Star Tiger team during their stay. The team will also have access to some top class laboratories. With the right team recruited, and the backing from my department, this project just has to succeed!." said Professor Richard Holdaway, Director Space Science and Technology at the Rutherford Appleton Laboratory.

Star Tiger starts at the beginning of June 2002 and will run for 4 months. Scientists and engineers wishing to take part should apply online at the Star Tiger website www.startiger.org.

Jacky Hutchinson | alphagalileo
Further information:
http://www.startiger.org

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>