Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interplanetary networking: ESA’s Mars Express will keep an eye on NASA’s Phoenix

02.08.2007
ESA’s Mars Express will keep an eye on NASA’s Phoenix lander as it makes its way to the Martian surface, setting an example for international cooperation and interplanetary networking.

Phoenix’s launch is scheduled for 4 August this year and it is expected to land on the Red Planet in the spring of 2008. The mission will investigate the Martian environment and will look beneath the frigid, arctic landscape in search of conditions favourable to past or present life. At NASA’s request, ESA’s Mars Express spacecraft will be following Phoenix’s Entry Descent and Landing (EDL) phase.

The critical part of the descent lasts about 13 minutes. During this time, the probe will transmit a continuous stream of information to two of NASA’s satellites already orbiting the Red Planet. To be on the safe side, NASA has requested Mars Express, which has been in orbit around Mars since December 2003, to also monitor the EDL phase.

Mars Express has been selected since, in principle, its elliptical orbit makes it possible for the spacecraft to have a continuous view of the lander and to communicate with it for longer periods of time.

Mars Express will optimise its orbit so that Phoenix is continuously in view during the EDL phase. The final orbit adjustment required for Mars Express will be determined a few weeks after the launch of Phoenix. Final adjustments will be made in April next year, just before the Phoenix EDL phase.

ESA’s Mars Express Mission Manager, Fred Jansen explains, “One of the instruments on board Mars Express is the Mars Express Lander Communications system (MELACOM), designed to communicate with probes on the planet’s surface. Originally meant for communicating with the Beagle 2 lander, which was unfortunately lost, we can now use it to communicate with Phoenix.”

It is possible that the spacecraft will communicate with the lander, not only during EDL, but also for the remainder of the anticipated 90-day lifetime of the mission.

“NASA still has two other active probes on the Martian surface. When Phoenix joins the fleet around mid-2008, lots of data will have to be relayed back to Earth from the surface of Mars. If we are asked to help out by channelling part of the communication through Mars Express, we will, of course, try to accomodate such a request" adds Jansen.

Apart from assistance during the EDL phase, NASA has also requested ESA to support the launch of Phoenix from its ground station in Kourou, French Guiana.

Michel Denis | alfa
Further information:
http://www.esa.int/SPECIALS/Mars_Express/SEMWNCWUP4F_0.html

More articles from Physics and Astronomy:

nachricht Four elements make 2-D optical platform
26.09.2017 | Rice University

nachricht The material that obscures supermassive black holes
26.09.2017 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>