Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interplanetary networking: ESA’s Mars Express will keep an eye on NASA’s Phoenix

02.08.2007
ESA’s Mars Express will keep an eye on NASA’s Phoenix lander as it makes its way to the Martian surface, setting an example for international cooperation and interplanetary networking.

Phoenix’s launch is scheduled for 4 August this year and it is expected to land on the Red Planet in the spring of 2008. The mission will investigate the Martian environment and will look beneath the frigid, arctic landscape in search of conditions favourable to past or present life. At NASA’s request, ESA’s Mars Express spacecraft will be following Phoenix’s Entry Descent and Landing (EDL) phase.

The critical part of the descent lasts about 13 minutes. During this time, the probe will transmit a continuous stream of information to two of NASA’s satellites already orbiting the Red Planet. To be on the safe side, NASA has requested Mars Express, which has been in orbit around Mars since December 2003, to also monitor the EDL phase.

Mars Express has been selected since, in principle, its elliptical orbit makes it possible for the spacecraft to have a continuous view of the lander and to communicate with it for longer periods of time.

Mars Express will optimise its orbit so that Phoenix is continuously in view during the EDL phase. The final orbit adjustment required for Mars Express will be determined a few weeks after the launch of Phoenix. Final adjustments will be made in April next year, just before the Phoenix EDL phase.

ESA’s Mars Express Mission Manager, Fred Jansen explains, “One of the instruments on board Mars Express is the Mars Express Lander Communications system (MELACOM), designed to communicate with probes on the planet’s surface. Originally meant for communicating with the Beagle 2 lander, which was unfortunately lost, we can now use it to communicate with Phoenix.”

It is possible that the spacecraft will communicate with the lander, not only during EDL, but also for the remainder of the anticipated 90-day lifetime of the mission.

“NASA still has two other active probes on the Martian surface. When Phoenix joins the fleet around mid-2008, lots of data will have to be relayed back to Earth from the surface of Mars. If we are asked to help out by channelling part of the communication through Mars Express, we will, of course, try to accomodate such a request" adds Jansen.

Apart from assistance during the EDL phase, NASA has also requested ESA to support the launch of Phoenix from its ground station in Kourou, French Guiana.

Michel Denis | alfa
Further information:
http://www.esa.int/SPECIALS/Mars_Express/SEMWNCWUP4F_0.html

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>