Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover New Way to Study Nanostructures

25.07.2007
Scientists at the Georgia Institute of Technology have discovered a phenomenon which allows measurement of the mechanical motion of nanostructures by using the AC Josephson effect. The findings, which may be used to identify and characterize structural and mechanical properties of nanoparticles, including materials of biological interest, appear online in the journal Nature Nanotechnology.

The AC Josephson effect refers to work that Brian Josephson published in 1962 regarding the flow of an electrical current between superconductors. In this work, for which he shared a 1973 Nobel Prize, Josephson predicted that when a constant voltage difference is maintained across two weakly linked superconductors separated by a thin insulating barrier (an arrangement now known as a Josephson junction), an alternating electrical current would flow through the junction (imagine turning on a water faucet and having the water start flowing up as well as down once it leaves the spigot). The frequency of the current oscillations is directly related to the applied voltage.

These predictions were fully confirmed by an immense number of experiments, and the standard volt is now defined in terms of the frequency of the Josephson AC current. The Josephson effect has numerous applications in physics, computing and sensing technologies. It can be used for ultra high sensitive detection of electromagnetic radiation, extremely weak magnetic fields and in superconducting quantum computing bits.

Now, experimental physicist Alexei Marchenkov and theoretician Uzi Landman at Georgia Tech have discovered that the AC Josephson effect can be used to detect mechanical motion of atoms placed in the Josephson junction.

"We show here that in addition to being able to detect the effects of electromagnetic radiation on the AC Josephson current, one can also use it to probe mechanical motions of atoms or molecules placed in the junction,” said Landman, director of the Center for Computational Materials Science, Regents and Institute professor, and Callaway Chair of Physics at Georgia Tech. “The prospect of being able to explore, and perhaps utilize, atomic-scale phenomena using this effect is very exciting.”

In January 2007, Marchenkov and Landman published a paper in Physical Review Letters detailing their discovery that fluctuations in the conductance of ultra-thin niobium nanowires are caused by a pair of atoms, known as a dimer, shuttling back and forth between the bulk electrical leads.

In this latest research, Marchenkov and Landman, along with their collaborators Zhenting Dai, Brandon Donehoo and Robert Barnett, report that when a microfabricated junction assembly is held below its superconducting transition temperature, unusual features are found in traces of the electrical conductance measured as a function of the applied voltage.

“In our experiments, only nanowires - which we know now to contain a single dimer have consistently shown a series of additional peaks in the conductance versus voltage curves. Since a peak in such measurements signifies a resonance and knowing that we have intrinsic high-frequency Josephson current oscillations, we started looking into the possible physical mechanisms,” said Marchenkov, assistant professor in the School of Physics.

The team hypothesized that the new measured peaks likely originate from mechanical motions of the dimer, which causes enhancement of the electrical current at particular values of the applied voltage. At each of the peak voltages, the frequency of the AC Josephson current would resonate with the vibrational frequency of the nanostructure in the junction.

Subsequent first principles calculations by Landman’s team predicted that such peaks would occur at three different frequencies, or voltages, and their integer multiples. One corresponds to a back and forth vibration of the dimer suspended between the two niobium electrode tips, a second corresponds to motion in the direction perpendicular to the axis connecting the two tips, and the remaining corresponds to a wagging, or rocking, vibration of the dimer about the inter-tip axis. Ensuing targeted experiments demonstrated that the resonance peaks disappear gradually as one approaches the superconducting transition temperature from below, while their positions do not change. These observations, exhaustive qualitative and quantitative agreement between experimental measurements and theoretical predictions confirm that vibrational motions of the nanowire atoms are indeed the cause for the newly observed conductance peaks.

Marchenkov and Landman plan to further explore vibrational effects in weak link junctions, using the information obtained through these studies for determining vibrational characteristics, atomic arrangements, and transport mechanisms in metallic, organic and biomolecular nanostructures.

“One of our aims is the development of devices and sensing methodologies that utilize the insights gained from our research,” said Landman.

David Terraso | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>