Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Semiconductor membrane mimics biological behavior of ion channels

A semiconductor membrane designed by researchers at the University of Illinois could offer more flexibility and better electrical performance than biological membranes. Built from thin silicon layers doped with different impurities, the solid-state membrane also could be used in applications such as single-molecule detection, protein filtering and DNA sequencing.

"By creating nanopores in the membrane, we can use the membrane to separate charged species or regulate the flow of charged molecules and ions, thereby mimicking the operation of biological ion channels," said lead researcher Jean-Pierre Leburton, the Stillman Professor of Electrical and Computer Engineering at Illinois.

Leburton, with postdoctoral research associate Maria Gracheva and graduate student Julien Vidal, simulated the operation of the semiconductor membrane at a number of electrostatic potentials. They report their findings in a paper accepted for publication in the journal Nano Letters, and posted on the journal's Web site.

In the researchers' model, the nanopore-membrane structure is made of two layers of silicon, each 12 nanometers thick, with opposite (n- and p-) doping. The electrostatic potential is positive on the n-side and negative on the p-side of the membrane.

The nanopore has an hourglass shape, with a neck 1 nanometer in diameter and openings on each side of the membrane 6 nanometers in diameter. The "size" of the nanopore can be changed by changing the electrostatic potential around it.

By controlling the flow of ions, the artificial nanopore offers a degree of tunability not found in biological ion channels, said Leburton, who also is a researcher at the university's Beckman Institute, the Coordinated Research Laboratory, and the Micro and Nanotechnology Laboratory.

In addition to serving as a substitute for biological ion channels, the solid-state nanopore and membrane could be used in other applications, including sequencing DNA.

"Using semiconductor technology to sequence the DNA molecule would save time and money," Leburton said. "By biasing the voltage across the membrane, we could pull DNA through the nanopore. Since each base pair carries a different electrical charge, we could use the membrane as a p-n junction to detect the changing electrical signal."

Funding was provided by the National Science Foundation and the National Institutes of Health.

James E. Kloeppel | University of Illinois
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>