Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mystery of R Coronae Borealis and other helium stars solved

25.03.2002


Astronomers Dr Simon Jeffery of the Armagh Observatory and Dr Hideyuki Saio of Tohoku University, Japan, have finally solved a long-standing mystery concerning the creation of two particular kinds of rare stars. They have found that a class of variable stars named after their prototype R Coronae Borealis (RCrB), and a related group called `extreme helium stars` are the products of mergers between pairs of white dwarf stars. What kind of star results from the merger depends on the composition of the white dwarfs. The research is to be published in the Monthly Notices of the Royal Astronomical Society.



RCrB stars and their hotter cousins, the extreme helium stars, are highly unusual. While most ordinary stars are typically three-quarters hydrogen (by weight), these oddities have hardly any hydrogen on their surfaces. Instead, they are made primarily of helium, with some carbon, traces of hydrogen and other peculiarities. For some time, astronomers have suspected that they are the mixed-up remains from inside old stars, where nuclear fusion has created helium, carbon and other chemical elements. The question has been, how did it happen?

The problem has haunted Simon Jeffery for much of his career. He began studying extreme helium stars about 20 years ago, and his collaboration with Hideyuki Saio started in 1985. A breakthrough came when Jeffery realised that the helium stars are giving out more energy than they produce inside them by nuclear processes. That meant they must be shrinking. Observations he made of four helium stars with the orbiting International Ultraviolet Explorer (IUE) observatory demonstrated that they were getting hotter by 30120 degrees per year. And observations of some pulsating helium stars showed that they are 90% the mass of the Sun.


Saio, an expert on computer modelling, developed the simulations of stellar mergers needed to convince other astronomers that two white dwarfs coming together could explain the observations. It was a difficult job. Conventional thinking said that if you added hydrogen from one white dwarf to another, it would either just be blown away or there would be a supernova explosion. But what would happen if you added helium?

White dwarfs are the cores left over when old, evolved stars blow off their outer layers. They are by no means all the same and their compositions cover a bewildering range. A simulated merger between two helium white dwarfs produced a star matching very closely the properties of a nitrogen-rich helium star called V652 Herculis. A merger between a carbon-oxygen white dwarf and a helium white dwarf matched the shrinking helium stars Jeffery had observed with IUE and explained very well the properties of RCrB stars and extreme helium stars.

"There are still some unanswered questions, though" says Jeffery. "The actual merger, when one white dwarf is ripped apart by its companion, is
likely to be extremely violent, taking a matter of a few minutes. We don`t yet know how the material will be spread out - into a big disk around the star perhaps - or what happens as the new helium star expands by a factor of 10,000".

Dr Simon Jeffery | alphagalileo
Further information:
http://www.arm.ac.uk/~csj/movies/merger.mpg

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>