Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mystery of R Coronae Borealis and other helium stars solved

25.03.2002


Astronomers Dr Simon Jeffery of the Armagh Observatory and Dr Hideyuki Saio of Tohoku University, Japan, have finally solved a long-standing mystery concerning the creation of two particular kinds of rare stars. They have found that a class of variable stars named after their prototype R Coronae Borealis (RCrB), and a related group called `extreme helium stars` are the products of mergers between pairs of white dwarf stars. What kind of star results from the merger depends on the composition of the white dwarfs. The research is to be published in the Monthly Notices of the Royal Astronomical Society.



RCrB stars and their hotter cousins, the extreme helium stars, are highly unusual. While most ordinary stars are typically three-quarters hydrogen (by weight), these oddities have hardly any hydrogen on their surfaces. Instead, they are made primarily of helium, with some carbon, traces of hydrogen and other peculiarities. For some time, astronomers have suspected that they are the mixed-up remains from inside old stars, where nuclear fusion has created helium, carbon and other chemical elements. The question has been, how did it happen?

The problem has haunted Simon Jeffery for much of his career. He began studying extreme helium stars about 20 years ago, and his collaboration with Hideyuki Saio started in 1985. A breakthrough came when Jeffery realised that the helium stars are giving out more energy than they produce inside them by nuclear processes. That meant they must be shrinking. Observations he made of four helium stars with the orbiting International Ultraviolet Explorer (IUE) observatory demonstrated that they were getting hotter by 30120 degrees per year. And observations of some pulsating helium stars showed that they are 90% the mass of the Sun.


Saio, an expert on computer modelling, developed the simulations of stellar mergers needed to convince other astronomers that two white dwarfs coming together could explain the observations. It was a difficult job. Conventional thinking said that if you added hydrogen from one white dwarf to another, it would either just be blown away or there would be a supernova explosion. But what would happen if you added helium?

White dwarfs are the cores left over when old, evolved stars blow off their outer layers. They are by no means all the same and their compositions cover a bewildering range. A simulated merger between two helium white dwarfs produced a star matching very closely the properties of a nitrogen-rich helium star called V652 Herculis. A merger between a carbon-oxygen white dwarf and a helium white dwarf matched the shrinking helium stars Jeffery had observed with IUE and explained very well the properties of RCrB stars and extreme helium stars.

"There are still some unanswered questions, though" says Jeffery. "The actual merger, when one white dwarf is ripped apart by its companion, is
likely to be extremely violent, taking a matter of a few minutes. We don`t yet know how the material will be spread out - into a big disk around the star perhaps - or what happens as the new helium star expands by a factor of 10,000".

Dr Simon Jeffery | alphagalileo
Further information:
http://www.arm.ac.uk/~csj/movies/merger.mpg

More articles from Physics and Astronomy:

nachricht First direct observation and measurement of ultra-fast moving vortices in superconductors
20.07.2017 | The Hebrew University of Jerusalem

nachricht Manipulating Electron Spins Without Loss of Information
19.07.2017 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>