Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Queen's chemists work with NASA to develop liquids for lunar telescope

11.07.2007
Chemists at Queen's University Belfast are working with NASA and scientists in Canada and the United States to design a telescope that can be stationed on the Moon.

The instrument will have a mirror consisting of a liquid with a thin metal film on its surface that rotates to form a bowl shape, known as a parabola. When the liquid spins in a perfect parabola, it will be able to reflect infrared light from distant stars and galaxies that cannot be picked up by telescopes on Earth because of atmospheric interference and light pollution.

Telescopes with parabolic liquid mirrors are much cheaper and easier to make and maintain than conventional telescopes with glass mirrors. Liquid mirror telescopes employed in observatories on Earth traditionally use mercury as the reflective liquid. However, mercury cannot be used for a lunar liquid mirror telescope as the high-vacuum conditions on the Moon would cause the mercury to boil.

The Queen's team has been investigating the possibility of preparing a reflective liquid for the telescope consisting of an ionic liquid that can be coated on its surface with a thin layer of a reflective metal.

Ionic liquids are liquid salts. They consist essentially of ions (electrically-charged atoms or groups of atoms). Ionic liquids generally have negligible vapour pressures which mean that they do not boil, even under vacuum. Many ionic liquids do not freeze at the sub-zero temperatures found on the Moon. They have the added advantage that they are much lighter than mercury - a key consideration for transporting a telescope to the Moon.

In a report in the June 21 issue of the science journal Nature, the Belfast, Canadian, and U.S. scientists showed that a commercially-available ionic liquid can be coated with silver and that the coated fluid is stable over several months.

"The discovery that an ionic liquid can be coated with a very thin metal layer is a major breakthrough," said chemistry professor, Ken Seddon, who is one of the authors of the report and Director of Queen's University Ionic Liquids Laboratories (QUILL).

The authors also reported that the ionic liquid does not evaporate in a vacuum and remains liquid at temperatures down to 175 K (-98oC). The lunar liquid mirror telescope, however, will require a liquid with an even lower melting point.

Fortunately, there is a phenomenal choice of ionic liquids. More than 1,500 have been described in the scientific literature over the past ten years or so and about 500 are available commercially. According to Seddon, around one million simple ionic liquids are theoretically possible and they can be designed for a wide variety of applications. But most have yet to be prepared.

"We now plan to design and prepare ionic liquids with melting points of around 100 K that can be coated with a reflective metal for the lunar telescope" said Assistant Director of QUILL, Maggel Deetlefs.

Lisa Mitchell | alfa
Further information:
http://www.qub.ac.uk

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>