Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Queen's chemists work with NASA to develop liquids for lunar telescope

11.07.2007
Chemists at Queen's University Belfast are working with NASA and scientists in Canada and the United States to design a telescope that can be stationed on the Moon.

The instrument will have a mirror consisting of a liquid with a thin metal film on its surface that rotates to form a bowl shape, known as a parabola. When the liquid spins in a perfect parabola, it will be able to reflect infrared light from distant stars and galaxies that cannot be picked up by telescopes on Earth because of atmospheric interference and light pollution.

Telescopes with parabolic liquid mirrors are much cheaper and easier to make and maintain than conventional telescopes with glass mirrors. Liquid mirror telescopes employed in observatories on Earth traditionally use mercury as the reflective liquid. However, mercury cannot be used for a lunar liquid mirror telescope as the high-vacuum conditions on the Moon would cause the mercury to boil.

The Queen's team has been investigating the possibility of preparing a reflective liquid for the telescope consisting of an ionic liquid that can be coated on its surface with a thin layer of a reflective metal.

Ionic liquids are liquid salts. They consist essentially of ions (electrically-charged atoms or groups of atoms). Ionic liquids generally have negligible vapour pressures which mean that they do not boil, even under vacuum. Many ionic liquids do not freeze at the sub-zero temperatures found on the Moon. They have the added advantage that they are much lighter than mercury - a key consideration for transporting a telescope to the Moon.

In a report in the June 21 issue of the science journal Nature, the Belfast, Canadian, and U.S. scientists showed that a commercially-available ionic liquid can be coated with silver and that the coated fluid is stable over several months.

"The discovery that an ionic liquid can be coated with a very thin metal layer is a major breakthrough," said chemistry professor, Ken Seddon, who is one of the authors of the report and Director of Queen's University Ionic Liquids Laboratories (QUILL).

The authors also reported that the ionic liquid does not evaporate in a vacuum and remains liquid at temperatures down to 175 K (-98oC). The lunar liquid mirror telescope, however, will require a liquid with an even lower melting point.

Fortunately, there is a phenomenal choice of ionic liquids. More than 1,500 have been described in the scientific literature over the past ten years or so and about 500 are available commercially. According to Seddon, around one million simple ionic liquids are theoretically possible and they can be designed for a wide variety of applications. But most have yet to be prepared.

"We now plan to design and prepare ionic liquids with melting points of around 100 K that can be coated with a reflective metal for the lunar telescope" said Assistant Director of QUILL, Maggel Deetlefs.

Lisa Mitchell | alfa
Further information:
http://www.qub.ac.uk

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>