Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A device to eliminate optical imperfections and to improve the quality of images has been developed

06.07.2007
A team of scientists from the Universitat Jaume I (UJI) and the Universidade de Santiago de Compostela (USC) in Spain has created a device that measures and counteracts the imperfections of any optical system and, consequently, allows higher quality images to be obtained.

The invention will enable ophthalmologists to improve the physical examination of their patients’ ocular fundus and to diagnose pathologies affecting the retina more reliably. Furthermore, the device opens the way towards the development of intelligent glasses, capable of being automatically adapted to the user’s visual deficiencies.

The images we see are formed when light reflects on the objects surrounding us, and then penetrates our eyes and hits the retina. But during this process, light passes through different media (the atmosphere, the cornea, the crystalline lens, the vitreous and aqueous humours) that are neither ideal nor homogenous and, for this reason, imperfections appear in the final image.

A parallel situation takes place in other optical systems (telescopes, microscopes, cameras) whose images are also affected by some type of deformation or degradation. The device developed by UJI and USC allows these shortcomings (optical aberrations, in scientific jargon) to be immediately and automatically measured and corrected.

One of the advantages of the new system with regard to those already existing is that it uses commercial liquid crystal screens of the TNLCD (Twisted Nematic Liquid Crystal) kind which reduce the device manufacturing costs. Under adequate polarisation conditions, liquid crystal screens operate with light and enable the modulation of the electromagnetic field amplitude, which is associated with the light that falls on them; this is obtained when a low computer-controlled voltage is applied to each screen pixel.

Another innovating aspect presented by the device that has been developed and patented by UJI and USC is that, for the first time, it integrates the measuring and counteracting of optical aberrations in one single system element (the liquid crystal screen). In this way, the whole invention can not only determine the degree of imperfection of the image that needs to be corrected, but can also apply the necessary voltage to counteract it. And all this is done quickly and automatically.

The researchers are currently seeking a technological company capable of producing and commercialising the invention. The research has been jointly conducted by the Research Group on Optics from the Department of Physics at UJI and by the Research Group on Wave-Front Sensors and Micro-Optics from the Department of Applied Physics at USC, which are respectively directed by Professors Vicent Climent and Salvador X. Bará.

Hugo Cerdà | alfa
Further information:
http://www.uji.es/canals/investigacio/

More articles from Physics and Astronomy:

nachricht MEMS chips get metatlenses
21.02.2018 | American Institute of Physics

nachricht International team publishes roadmap to enhance radioresistance for space colonization
21.02.2018 | Biogerontology Research Foundation

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>