Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A device to eliminate optical imperfections and to improve the quality of images has been developed

06.07.2007
A team of scientists from the Universitat Jaume I (UJI) and the Universidade de Santiago de Compostela (USC) in Spain has created a device that measures and counteracts the imperfections of any optical system and, consequently, allows higher quality images to be obtained.

The invention will enable ophthalmologists to improve the physical examination of their patients’ ocular fundus and to diagnose pathologies affecting the retina more reliably. Furthermore, the device opens the way towards the development of intelligent glasses, capable of being automatically adapted to the user’s visual deficiencies.

The images we see are formed when light reflects on the objects surrounding us, and then penetrates our eyes and hits the retina. But during this process, light passes through different media (the atmosphere, the cornea, the crystalline lens, the vitreous and aqueous humours) that are neither ideal nor homogenous and, for this reason, imperfections appear in the final image.

A parallel situation takes place in other optical systems (telescopes, microscopes, cameras) whose images are also affected by some type of deformation or degradation. The device developed by UJI and USC allows these shortcomings (optical aberrations, in scientific jargon) to be immediately and automatically measured and corrected.

One of the advantages of the new system with regard to those already existing is that it uses commercial liquid crystal screens of the TNLCD (Twisted Nematic Liquid Crystal) kind which reduce the device manufacturing costs. Under adequate polarisation conditions, liquid crystal screens operate with light and enable the modulation of the electromagnetic field amplitude, which is associated with the light that falls on them; this is obtained when a low computer-controlled voltage is applied to each screen pixel.

Another innovating aspect presented by the device that has been developed and patented by UJI and USC is that, for the first time, it integrates the measuring and counteracting of optical aberrations in one single system element (the liquid crystal screen). In this way, the whole invention can not only determine the degree of imperfection of the image that needs to be corrected, but can also apply the necessary voltage to counteract it. And all this is done quickly and automatically.

The researchers are currently seeking a technological company capable of producing and commercialising the invention. The research has been jointly conducted by the Research Group on Optics from the Department of Physics at UJI and by the Research Group on Wave-Front Sensors and Micro-Optics from the Department of Applied Physics at USC, which are respectively directed by Professors Vicent Climent and Salvador X. Bará.

Hugo Cerdà | alfa
Further information:
http://www.uji.es/canals/investigacio/

More articles from Physics and Astronomy:

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>