Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A device to eliminate optical imperfections and to improve the quality of images has been developed

06.07.2007
A team of scientists from the Universitat Jaume I (UJI) and the Universidade de Santiago de Compostela (USC) in Spain has created a device that measures and counteracts the imperfections of any optical system and, consequently, allows higher quality images to be obtained.

The invention will enable ophthalmologists to improve the physical examination of their patients’ ocular fundus and to diagnose pathologies affecting the retina more reliably. Furthermore, the device opens the way towards the development of intelligent glasses, capable of being automatically adapted to the user’s visual deficiencies.

The images we see are formed when light reflects on the objects surrounding us, and then penetrates our eyes and hits the retina. But during this process, light passes through different media (the atmosphere, the cornea, the crystalline lens, the vitreous and aqueous humours) that are neither ideal nor homogenous and, for this reason, imperfections appear in the final image.

A parallel situation takes place in other optical systems (telescopes, microscopes, cameras) whose images are also affected by some type of deformation or degradation. The device developed by UJI and USC allows these shortcomings (optical aberrations, in scientific jargon) to be immediately and automatically measured and corrected.

One of the advantages of the new system with regard to those already existing is that it uses commercial liquid crystal screens of the TNLCD (Twisted Nematic Liquid Crystal) kind which reduce the device manufacturing costs. Under adequate polarisation conditions, liquid crystal screens operate with light and enable the modulation of the electromagnetic field amplitude, which is associated with the light that falls on them; this is obtained when a low computer-controlled voltage is applied to each screen pixel.

Another innovating aspect presented by the device that has been developed and patented by UJI and USC is that, for the first time, it integrates the measuring and counteracting of optical aberrations in one single system element (the liquid crystal screen). In this way, the whole invention can not only determine the degree of imperfection of the image that needs to be corrected, but can also apply the necessary voltage to counteract it. And all this is done quickly and automatically.

The researchers are currently seeking a technological company capable of producing and commercialising the invention. The research has been jointly conducted by the Research Group on Optics from the Department of Physics at UJI and by the Research Group on Wave-Front Sensors and Micro-Optics from the Department of Applied Physics at USC, which are respectively directed by Professors Vicent Climent and Salvador X. Bará.

Hugo Cerdà | alfa
Further information:
http://www.uji.es/canals/investigacio/

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>