Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Pierre Auger Observatory shares cosmic-ray data with public and students

Scientists of the Pierre Auger Collaboration yesterday (July 3) began the public release of one percent of the cosmic-ray events recorded by the Pierre Auger Observatory in Argentina. New cosmic-ray data—about 70 events per day—will be posted on a daily basis. The data and their visualizations are available at and

The international Pierre Auger Collaboration, which includes scientists from 17 countries, explores the origins of extremely rare ultra-high-energy cosmic rays—particles from space that hit Earth, some with energies 100 million times higher than those made by the world's highest-energy particle accelerator, the Tevatron at Fermilab or even those that will be produced in the LHC at CERN next year. These are the highest-energy particles ever recorded in nature. When such a particle hits the atmosphere it creates an air shower that can contain 200 billion particles by the time it reaches the ground.

The one-percent release is part of the worldwide Pierre Auger education and outreach program. It will allow teachers to expose students to real scientific data and the breathtaking processes that take place in the cosmos, hurling charged particles toward Earth. The two Web sites provide the data both as graphical displays and in tabular form. For each cosmic-ray air shower, the Web sites show the energy and direction of the incoming cosmic-ray particle. The public data provides information on cosmic-rays with extremely high energy, up to 5 x 10^19 electron volts (eV).

When construction is complete near the end of the year, the Pierre Auger Observatory will extend over 3000 square kilometres (~1000 square miles) in Argentina's Mendoza Province, just east of the Andes Mountains. The full observatory will consist of an array of 1,600 detectors that record the arrival of air showers on the ground. Information gathered by the detectors is transmitted to a central data acquisition system using solar-powered cellular phone technology. Surrounding the detector array and looking toward its centre is a set of 24 telescopes that—on clear moonless nights—observe the ultraviolet fluorescence light produced as shower particles travel through the atmosphere.

The Pierre Auger collaboration includes more than 370 scientists and engineers from 60 institutions in 17 countries, which share the construction cost of approximately $50 million (US).

The international funding agencies contributing to the Pierre Auger Observatory as well as the participating institutions are listed below.

Julia Maddock | alfa
Further information:

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>