Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It is easy to find a needle in a haystack!

02.07.2007
Researchers from the town of Zelenograd (situated near Moscow) have developed an efficient and convenient device for detecting metal objects.

It is distinguished from its analogues because it is a highly sensitive method that allows you to detect a razor blade, a coin, or even a small pin in the lapel of your jacket. This magnetosensitive sensor system even enables you to see the contours of objects and identify whether it is made of ferrous or non-ferrous metal.

The device is based on a grid of magnetosensitive sensors which were developed (along with the device itself) by specialists of the Research and Production Complex “Technology Center” of the Moscow Institute of Electronic Technology (MIET). As the developers are taking out a patent for the device and the sensors, they do not disclose their design yet. However, the subject matter is explained as follows.

The “heart” of each sensor is a superfine film of iron, nickel and cobalt alloy, 100 angstroem units thick (one hundredth of a micron). The film structure is heterogeneous with microcrystals forming differently oriented domains in it. The film pattern formed by microcrystal strokes is determined by the parameters of the magnetic field (magnetic intensity and direction of lines of force).

If magnetic field intensity changes, the microcrystals' orientation also changes, which affects the electrical resistance of the film. The object's own magnetic field or degree of distortion of the terrestrial magnetic field, is then recorded and measured. Nonferromagnetic metal objects are detected by the weak magnetism emitted using sensors surrounded by a coil of electromagnetic radiation which has a known emissive power and frequency.

The device can distinguish between metal objects by examining the area at a certain distance, for example, 10 centimeters, and filtering out other objects using a central processor. This processor analyzes data and compares it with reference objects. The object is displayed on an LCD display, much like an ordinary metal detector.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>